

Report

Largo Medical Office Building

Largo, Florida

I hesis Final

Disclaimer

- (1) Modifications and changes related to the original building design and construction methodologies for this senior thesis project are solely the interpretation of Thaison Nguyen. Changes and discrepancies in no way imply that the original design contained errors or was flawed. Differing assumptions, code references, requirements, and methodologies have been incorporated into this thesis project; therefore, investigation results may vary from the original design.
- (2) All design diagrams/figures/images and data tabulations, as well as other information in this report require permission from Thaison Nguyen or from the cited source, for use and/or reproduction. Permission(s) granted by Thaison Nguyen the permission grantee are based on good faith and reasonable assurances by the user and/or reproducer. If in any way the user and/or reproducer <u>violate</u> their assurances to the permission grantee and good faith, then the permission grantee has the right to <u>terminate, redact, and withdraw</u> the permission(s).

Abstract

Largo Medical Office Building

Largo, Florida

The Largo Medical Office Building (LMOB) is an expansion of the Largo Medical Complex, designed to house a centralized patient check-in area and diagnostic center.

General Scope

Function: Office Gross Area: 154,240 sq. ft. As-Built Cost: \$12.6 Million (not including equipment) Dates of Construction: August 2008 — November 2009 Project Delivery Method: Design-Bid-Build Owner and Developer: The Greenfield Group Architect: Oliver, Glidden, Spina & Partners Structural Consultant: McCarthy & Associates MEP Consultant: Steve Feller, P.E. Inc.

Structural Systems

Located in a hurricane zone, LMOB is designed to resist 130 mi/hr. winds. The facility utilizes reinforced concrete shear walls and a steel frame. Reinforced concrete shear walls serve to resist the lateral load and protect emergency egress.

In general, the structural floor system is primarily a 5" thick composite slab. Only the girders are compositely joined to the floor slab. To satisfy the 2-hour fire rating, defined by the 2004 Florida Building Code (FBC), the floor assembly received sprayed cementitous fireproofing,

MEP Systems

Primary Cooling: Direct Expansion (DX) with (2) Cooling Towers

Secondary Cooling: Refrigerant based Direct Expansion (DX) using Variable Frequency Motor

Diagnostic Equipment Cooling: Air Cooled Chiller

Heating: Resistant Heating Elements located at each floor

Electrical: 480/277V 3 phase - High Voltage 208/120V 3 phase - Low Voltage GTD20A emergency power relay system

Lighting: Utilize LED and Fluorescent Lighting in conjunction with occupancy and photo-sensors



Figure 1.2, Shear Wall Locations Source: Oliver, Glidden, Spina & Partners

Figure 1.3, Interior Lighting Source: Oliver, Glidden, Spina & Partners

Thaison Nguyen Structural Option

http://www.engr.psu.edu/ae/thesis/portfolios/2012/TZN106/Website%20Pages/Home/index.html

Executive Summary

The Largo Medical Office Building (LMOB) is a 154,240 ft² new medical office building which serves as an expansion of the Largo Medical Complex in Largo, FL. LMOB serves to replace the existing diagnostic center – which will likely be repurposed – and improved and centralized patient check-in. Built in the Fall of 2008 on a Design-Bid-Build contract, the facility incorporates several features not commonly found in other facilities built in Florida. For one, the gravity force resisting system uses structural steel, which is fairly unique for a region dominated by concrete. The lateral force resisting system however, is handled with reinforced concrete shear walls typically located around the emergency stairwells. LMOB's façade is composed primarily of reinforced masonry with a stucco finish. Since LMOB is located in an active hurricane zone, all window glazing is impact resistant.

This report primarily dives into redesigning LMOB's lateral force resisting system. Though the current lateral force resisting system adheres to strength and serviceability code requirements; the facility, in its present state, experiences significant torsional effects when exposed to wind and seismic loads. Should the facility be moved to a more seismically active region then the lateral force resisting elements will need to be redesigned to eliminate torsional irregularity and soft story irregularity. If the lateral force resisting elements are not redesigned then seismic induced damage will occur. One likely damage is the parking garage abutting to LMOB, which will become battered by the damaged and torsionally weak LMOB.

To solve torsion, two redesigns were generally studied and detailed. One lateral system involves adding additional lateral force resisting elements at the facility's perimeter, which became designated Design I. Majority of the original lateral force resisting elements in Design I require redesign arising from lateral load redistribution. As opposed to Design I, Design II eliminates all interior lateral force resisting elements and uses tilt-up walls to carry all the lateral forces to the ground. Surprisingly the controlling loads in Design II occur not during full occupancy but during the wall lifting process. The structural performance, like overall rigidity and resistance to torsion, are better for the redesigns. However, the redesigns are intrinsically complex to construct and carry a heavier financial burden – upwards to one million U.S. dollars (USD) more.

A façade redesign was also implemented to reduce weight, whilst maintaining moisture and thermal performance. The objectives were met, but attempts to reduce cost through using metal stud back-up wall were to no avail. As for acoustical attenuation, the redesign satisfies the recommended performance and had an acoustical performance that was generally similar to the original façade.

Acknowledgements

Before continuing any further, I would like to mention and extend my gratitude to the organizations and individuals for their support in completing this thesis project, this thesis report:

Hedrick Brothers Construction, for helping me search and find the building to do my thesis project. Greatly appreciated for their promptness, their willingness to extend a hand, their character going beyond the defined duty – breaking new ground; I'd like to specifically thank:

Dale R. Hedrick

Rick Ricalton

Oliver, Glidden, Spina & Partners; for providing the building, permission, and patience; especially:

Andrea Kokinakes Eileen Trimble

My family, as well as the entire Architectural Engineering faculty and student body – including those who are no longer here; for their spirit, their company, their charisma; I'd like to call out:

Dr. Richard A. Behr Dr. Andres Lepage Cheuk Tsang Corey Wilkinson Patrick Zuza

Though these organizations and individuals may mean nothing to those reading this thesis report and history books would likely never mention their name; but they have gained my gratitude, my respect. All that I can say right now is that a day will come when I will pay my debt, a debt I owe to them.

Building Introduction

Largo Medical Office Building (LMOB) is an expansion of the Largo Medical Center complex. Designed in 2007 and completed in 2009, LMOB is managed and constructed by The Greenfield Group. Overall the project cost \$12.6 million, not including the equipment. The design-bid-build facility is centrally positioned in the medical complex and is adjacent to the parking garage, as shown shaded red in Figure 1.1.

Located in Largo, Florida the six story facility was designed to house improved and centralized patient check-in area. The facility also houses office space for future tenants, as well as screening and diagnostic equipment. Office spaces for future tenants are not fitted out until the management agency signs a contract with the potential tenants.

Figure 1.1, Building Location Source: Google Maps

Figure 1.2, Partial Floor Plan Source: Oliver, Glidden, Spina & Partners

Patient privacy is a major concern for facilities housing medical related activities. Oliver, Glidden, Spina & Partners answered this by clustering the screening and diagnostic spaces close to the dressing areas (Figure 1.2). The architect went a step further, to preserve privacy by compartmentalizing the building's interior.

The building's façade primarily consists of stucco finished CMU. All CMUs are grouted and reinforced, to resist hurricane force winds. Likewise, the façade's glazing is impact resistant. To enhance the architecture, LMOB uses an exterior insulation finish system (E.I.F.S.) to create architectural moldings. The other architectural feature of the building is the overhang over the building's north entrance. Both the stucco finished CMU and E.I.F.S. can be seen in Figure 1.3. All three roof levels – main roof, east emergency stairwell roof, and the overhang – use one roof type, consisting of a 3-ply bituminous waterproofing applied over the insulated cast-in-place

concrete (Figure 1.3). To ensure adequate rainwater drainage, the insulated cast-in-place concrete is sloped ¹/₄" for every 12" horizontal.

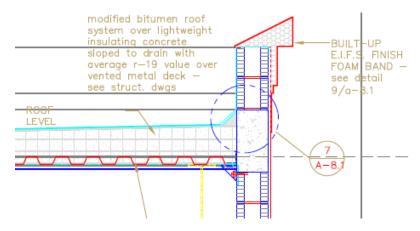


Figure 1.3, Wall and Roof Detail Source: Oliver, Glidden, Spina & Partners

The insulated cast-in-place concrete was used in-lieu of rigid insulation with stone ballast. One reason is that the facility is in a hurricane zone, where loose material can potentially become airborne projectiles and cause damage when there is a hurricane. The insulated concrete has sufficient mass to resist becoming airborne in a hurricane.

Figure 1.4, Perspective View of Exterior Source: Oliver, Glidden, Spina & Partners

Figure 1.5, Illustrated Floor Plan Source: Oliver, Glidden, Spina & Partners

LMOB is a steel framed facility with ordinary reinforced concrete shear walls to resist lateral loads. The structural consultant for LMOB is McCarthy & Associates. Shear walls are all located next to the elevators and emergency stairwells – to reduce impact on floor layout. All columns and shear walls rest on top of spread footings which are at least 27 in. below grade. As oppose to the primary gravity and main lateral force resisting system, the building's façade sit on top of strip footings. The internal bay sizes are generally smaller than the exterior bays. Increase exterior bay size is the result of architectural extrusions – shown above in Figure 1.4 and Figure 1.5 – in the facility's façade, primarily at the corners and entrances.

Existing Structural System

Design Codes

When designing the original LMOB structural engineering consulting firm, McCarthy and Associates, used the following codes and standards:

- 1. 2004 Florida Building Code (FBC)
 - Adoption of the 2003 International Building Code (IBC)
- 2. 13th Edition AISC Steel Construction Manual
- 3. Design Manual for Floor and Roof Decks by Steel Deck Institute (SDI)
- 4. ACI 318-05

Gravity Frame and Floor System

The steel frame is organized in the typical rectilinear pattern. Internal bay sizes are generally 30'-0'' square, typical size for most facilities, but the exterior bays are 33'-0'' square. Please see the appendix for typical plans and elevations. It was assumed that the columns, girders, and beams are fastened together by bearing bolts, as shown in Figure 1.6 - 10 cated below. A consequence of the assumption is that the steel frame only carries gravity loads.

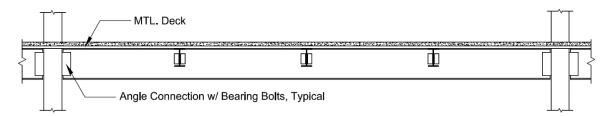


Figure 1.6, Typical Framing

Table 1.1, List of Structural Steel Used in LMOB				
Profile	Steel Type and Grade			
W-Shapes	ASTM A992 Gr. 50			
Angles	ASTM A36			
Plates	ASTM A36			
Reinforcing Bars	ASTM A615			

As a note, many assumptions were made concerning the original structural system due to confidentiality on part of the owner and engineer of record.

Base on architectural plans and calculation spot checks building uses W12 columns throughout, W24 girders, and W16 beams. Table 1.1 shows the steel type and grades which were used in the

original structure. Girders act compositely with the slab through shear studs, ³/₄" diameter. This composite action results in reduced structural floor depth. In order to reduce complexity the structural engineers ran most girders in the East/West (longitudinal) direction. Only unique conditions such as the overhang above the lobby entrance and loading area are girders are orientated differently.

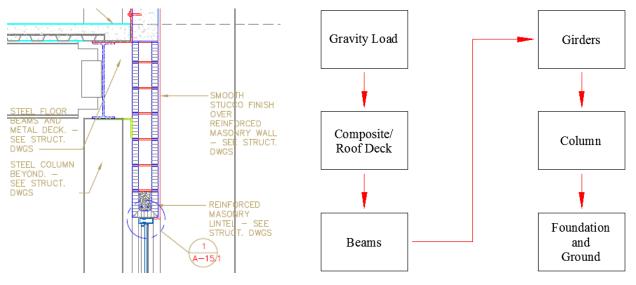


Figure 1.7, Typical Composite Slab Detail Source: Oliver, Glidden, Spina & Partners

Figure 1.8, Gravity Load Distribution

The structural flooring system is primarily a 5" thick composite slab and spans 8'-3", except for the ground. Figure 1.7 shows the primary composite slab. In order to satisfy the 2-hour fire rating defined by the FBC, it is likely that the floor assembly received a sprayed cementitous fireproofing. The available architectural documents show an exposed 2" composite deck with 3" of normal weight (NW) topping. According to the 2008 Vulcraft Decking Manual, the shown system only has a 1.5-hour rating.

Gravity load distribution path through the gravity frame and floor system can be followed in Figure 1.8. As for the spot checks mentioned earlier, they can be found in the appendix.

Lateral Force Resisting System

Lateral load are handled by the building's ordinary reinforced shear walls. The shear walls help the facility resist wind from the North/South and East/West direction. All shear walls are 8" thick and continuously span from the ground floor level to the primary roof (86' above ground floor level). Figure 1.9 shows shear wall locations and the respective naming designation. Lateral load travels through the building starting at the building's façade, which then transfers to the floor

diaphragm and collector elements. Then the lateral loads get transferred to the shear walls and finally to the ground.

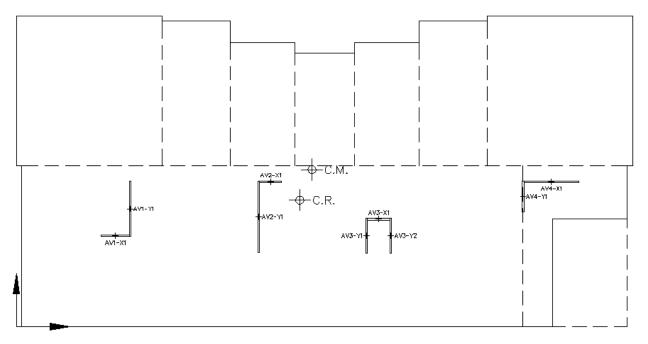


Figure 1.9, Shear Wall Locations

Rebar arrangement in the shear walls weren't provided, due to confidentiality issue mentioned earlier. The lack of information resulted in general design of the rebar in shear walls which may not coincide with the actual rebar configuration. General design of rebar in a shear wall for the original structure can be found in the appendix.

Large eccentricities between the center of mass and center of rigidity resulted in generally large torsion impact. Based on Table 12.3-2 in ASCE 7-05, the large torsion impact is a manifestation of torsional irregularity. In addition, increase floor-to-floor height of the first story creates a slight stiffness reduction. The result is a soft story irregularity at the first story and a slight shear reversal. Though it may appear that these irregularities are of little impact in a wind load dominated region, they are significant in affecting the building's maximum drift – especially if a neighboring building abuts to it and/or some lateral resisting elements are damaged. The irregularities are also significant should The Greenfield Group decide to expand operations into a more seismically active region and use a similar design then the building will have to be redesigned.

Loads on Building

Gravity Loads

Table 1.2, Weight of Building Materials						
Material	Weight	Reference				
Normal-Weight (NW) Concrete	150 lb/ft ³	AISC 14 th Edition – Table 17-13				
Light-Weight (LW) Concrete	113 lb/ft ³	Arch. Graphics Standards 11 Edition				
Vinyl Composition Tile (VCT)	1.33 lb/ft ²	Arch. Graphics Standards 11 Edition				
Ceramic/Porcelain Tile	10 lb/ft^2	AISC 14 th Edition – Table 17-13				
3-Ply Roofing	1 lb/ft^2	AISC 14 th Edition – Table 17-13				
0.8" Laminated Glass	8.2 lb/ft ²	Assumed				
MEP	15 lb/ft^2	Assumed				

Table 1.3, Unfactored Dead Load					
Floor Level	Load (kip)				
Ground	2425.2				
1	3325.7				
2	3289.7				
3	3289.7				
4	3289.7				
5	3289.7				
Roof	3248.9				

Before beginning any design it is necessary to understand the various loads which act on the building. Table 1.2 contains the unit weight of the building materials used in the determination of the unfactored dead load at each floor level. To account for the unforeseen items, a collateral load of 5 lb/ft^2 was incorporated into the total unfactored dead load. Table 1.3 shows the determined total un-factored dead load by floor level, not including the self-weight of structural steel. Further calculation details concerning the unfactored dead load can be found in the appendix.

The total unfactored dead load, in Table 1.3, will change if the following assumptions aren't respected:

- 1. Metal deck has equal rib volume
- 2. Glazing and concrete are the only façade materials
- 3. All floors except for the roof use the same type of concrete

Based on the 2009 IBC, LMOB is classified as a type B occupancy. The result of this classification is the use of office live loads. Another live load used to analyze the gravity system is emergency

Table 1.4, Typical Live Loads					
Description ASCE 7-05					
Stairs	100 lb/ft ²				
Lobby & First Floor Corridor	100 lb/ft ²				
Corridors Above First Floor	80 lb/ft ²				
Ordinary Flat Roofs	20 lb/ft ²				
Partitions	15 lb/ft^2				

egress like stairwells and corridors. Below is Table 1.4 showing the live loads recommended by ASCE 7-05 and used to determine the total unfactored live load.

The predominate code allowed for a reduction in the live load, however the option to use live load reductions was not implemented. One reason is that there is the likelihood that the busy hospital will expand its use of facility. Already the hospital occupies 39700 ft² of LMOB and has added a parking garage to accommodate additional patients. Another reason, it is likely that the facility will incorporate new equipment, un-foreseen by the designers, in the future.

Table 1.5, Unfactored Live Load					
Floor Level	Load (kip)				
Ground	2313.6				
1	2001.7				
2	2103.9				
3	2103.9				
4	2103.9				
5	2103.9				
Roof	528.8				

Table 1.5 is a tabulation of the total unfactored live loads acting on the gravity structural system. Similar to the dead loads, detailed calculations can be found in the appendix.

Moving on to rain and snow loads, the location of LMOB is the deciding factor in whether rain or snow loads controlled. Being that the facility is in Largo, Florida it generally doesn't snow. This is confirmed by Figure 7-1 in ASCE 7-05 which indicates that the ground snow load is zero. The result is rain loads control. Rain load was determined through the use of ASCE 7-05 and the International Plumbing Code (IPC). A ponding instability investigation was not required by ASCE 7-05, because the roof slope is a 1/4" rise for every 12" horizontal. Thus there was no study of ponding potential on the roof.

The hourly rain rate for Largo, Florida wasn't in the standards; the closest city's hourly rain rate was used. Tampa, Florida is the closest city to Largo, Florida. Calculations indicate that the rain

load is 27.89 lb/ft². It was determined that the rain load is greater than the live roof load. Since the rain load is controlling it was used in lieu of the live roof load to check the gravity structural system.

Wind Load

Wind loads acting on LMOB are based on Method 2 in Chapter 6 of ASCE 7-05. When using the previously mentioned methods there are two classes of wind loads – those acting on the Main Wind Force Resisting System (MWFRS) and those acting on the Components & Cladding (CCL). Story forces and overturning moments were derived by calculating the wind pressures and loads.

Assumptions that were made to simplify method 2 are as follows:

- 1. Ignore the canopy
- 2. Due to multiple roof levels, that average roof elevation 95'-6" was utilized
- 3. Internal pressurization is unlikely due to use of impact resistant glazing
- 4. Type III for importance category

MWFRS wind loads in the North/South direction controls over the East/West direction. MWFRS Greater wind loads on the North/South building sides can be attributed to greater façade area. Detailed wind calculations and site characteristics are available for reference in the appendix. Shown below in Figure 1.10 to 1.13 are the MWFRS wind distribution and story shears acting in the cardinal directions.

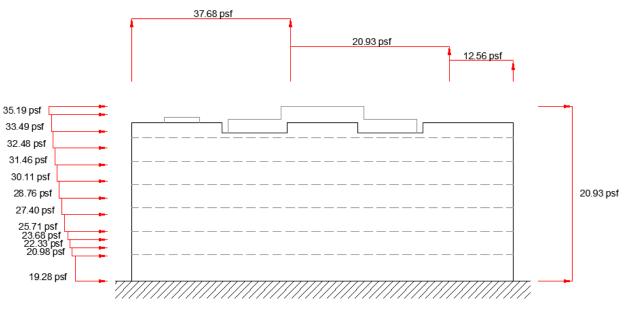


Figure 1.10, MWFRS East/West Wind Load Distribution

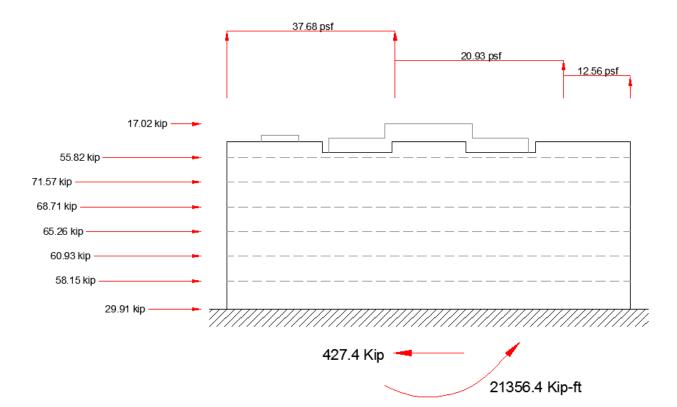


Figure 1.11, MWFRS Loads - East/West

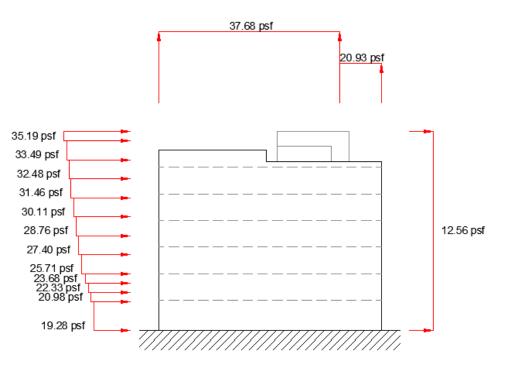


Figure 1.12, MWFRS North/South Wind Load Distribution

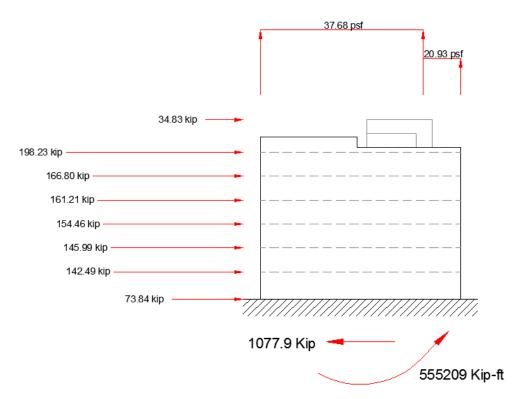


Figure 1.13, MWFRS Loads - North/South

Seismic Load

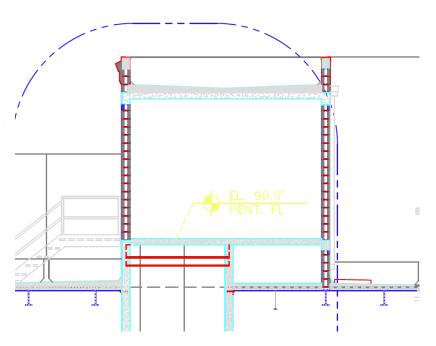


Figure 1.14, Non Seismic Design Top Roof Source: Oliver, Glidden, Spina & Partners

Equivalent Lateral Force method was used to determine the seismic loads on LMOB. The seismic load, an inertia load, is caused by ground acceleration. Seismic load transfers from the floor diaphragms to the shear walls. The shear walls enclose the emergency stairwells and elevator core, an illustration of the shear wall locations are highlighted black in Figure 1.9. No seismic loads were transferred to the top roof, at 105', due to the lack seismically designed masonry structure supporting the diaphragms (Figure 1.14).

Table 1.6, Effective Weight				
Floor Level	Level Effected Weight (kip)			
Ground	0			
1	3826.1			
2	3891.6			
3	3836.6			
4	3770.4			
5	3764.2			
Roof	3381.1			

When using ASCE 7-05 it was discovered that the facility doesn't experience significant seismic forces and are only 1.0% of the effective building weight. The small seismic force means that the wind loads control in Largo, FL. Gravity loads determined previously were used to calculate the effective building weight – which can be referenced in greater detail in the appendix. Table 1.6, describes the effective building weight by floor level.

Scope of Study

Largo Medical Office Building (LMOB) satisfies strength and serviceability requirements. This was confirmed in Technical Reports I and III. As mentioned earlier, the center of rigidity (CR) and center of mass (CM) don't coincide. Eccentricity between the CR and CM is caused by concentrating the shear walls in the southern half of the building. In the current shear wall arrangement there is torsional irregularity.

Facilities in Largo, FL are governed by wind loads, as opposed to seismic loads. If the facility remains in a Florida, there is no need to rectify the seismic irregularities. However, under the current scenario, LMOB's owners intend to aggressively expand their operations beyond Florida to more seismically active regions of the U.S. in the future. With foresight the owners plan to minimize general logistics, maintenance, and repair costs through using similar building layout and systems. In order to use a similar layout, LMOB's structure will need to be revised to eliminate ASCE 7-05 code defined torsional irregularity and soft story irregularity. Both which create significant structural weakness when the building is exposed to significant seismic loads.

Two design solutions will be considered to eliminate torsional irregularity and soft story irregularity. These solutions focus on increasing resistance to torsion and reinforce the soft first story of LMOB. Success of the solutions will not only rest upon performance but also upon the structural solution's constructability.

The first design is a general revision of the current lateral structural system. In Technical Report III, it was discovered that LMOB experiences soft story and extreme torsional irregularity. As a result, the lateral force resisting elements will be strategically placed to minimize eccentricity between the CM and CR. All lateral force systems will be designed either by hand or with the help of ETABS.

A second design solution is the tilt-up exterior bearing wall system. The tilt-up walls will serve as a lateral load resisting system and be the same height as the original lateral load resisting system -86'. 86' tall tilt-up walls will push close to the maximum feasible height for monolithically cast walls. Currently, the tallest panel feasibly cast monolithically and tilted into place is approximately 92' – for a commercial building in Hollywood, FL (TCA, 2014). The current limits to taller and heavier tilt-up walls are cost, lifting technology, and temporary bracing (Griffin, 2014). Internal lateral resisting elements will only be added, if it is determined that the tilt-up exterior walls are insufficient – however this is not expected. Due to the nature of tilt-up construction, the system's stability must be studied when under the various phases of construction. The purpose of the study is to ensure adequate temporary bracing and prevent failure during construction.

Though the existing building façade is generally code compliant and performs adequately, it is heavy. The façade's weight is detrimental if a similar facility is built in a more seismically active region due to increase strengthening of lateral force resisting elements – either through more expensive high strength materials or increase dimensions. Reducing the façade's weight is paramount along with preserving moisture resistance and acoustical performance, whilst reducing general construction cost, and improving relative ease of assembly.

In terms of the façade redesign, a light gauge cold formed steel (CFS) stud back-up wall will be used. What can be said is that the façade redesign strives to maintain – if not reduce – the general construction cost, and improve relative ease of assembly. Whether it has similar performance levels as the concrete masonry back-up wall remains to be determined.

Structural Redesign

Redesigns of LMOB's original lateral force resisting system were implemented in parallel. Parallel design is logical because both redesigns share the same center of mass and gravity loads, apart from the self-weight of the lateral force resisting systems. Generally the gravity structural system was disturbed minimally. The first step was to select the locations of the new lateral force resisting elements. In both redesigns, it was decided that lateral force resisting elements should be placed furthest from the center of mass – ideally at the building's perimeter – to efficiently resist torsional influences.

Once locations for lateral force resisting elements were selected, each new element in the redesigns went through stiffness modifications to reduce the eccentricity between the building's center of mass and center of rigidity. Stiffness modifications include: modifying the dimensions of the lateral force resisting elements and potentially increasing the concrete strength (f'_c). Only when the redesigns eliminated torsional irregularity, defined by ASCE 7-05, were the reinforcement designed and detailed. In both redesigns the controlling lateral load is wind. Increases in building mass – especially for the tilt-up walls – were not enough to make seismic the controlling lateral load. In the following sections, the design processes for each design will be discussed. The redesigns will be compared with the original structural system – serves as a baseline, to determine their competitiveness.

Design I

Figure 2.1, Potential Locations for Perimeter Lateral Force Resisting Elements Source: Oliver, Glidden, Spina & Partners

The first redesign is a slight modification of the original, with additional lateral force resisting elements placed at the perimeter of LMOB. Perimeter locations where the addition lateral force resisting elements can be placed are shown in Figure 2.1. Eventually the decision was made to use the area between column lines F.4 and H, as well as the area bounded by 1 and 3.5 – both of these areas are designated AV5-X and AV5-Y respectively. Both locations will contain elements with a thickness of 8" to ensure that the formwork at the short sides are the same as those used on the current shear walls. Constructability is improved when components are similar.

Then the desired eccentricity between the center of mass and center of rigidity to eliminate code defined torsional irregularity was assumed. This assumption was 7.5% or less in both directions. With the assumption made, it was derived that elements in area AV5-X must have a stiffness of at least 32.3 force per in. As for element in area AV5-Y the required stiffness was 129.5 force per in. Using the cantilevered beam stiffness (k) formula 3EI/L^3 and assuming that the total transformed elastic modulus – which includes steel reinforcement – is 1.5E_c , it was determined that the spaces between the openings weren't enough. To achieve the necessary stiffness each lateral force resisting element must span across the openings and engage the adjacent spaces between the openings. Calculations used to determine the required stiffness for the perimeter lateral force resisting elements are not in the appendix and are available only upon request, in an attempt to reduce paper usage.

Later it was determined that using 6000 lb/in^2 is far more economical than the lower strength concrete in the original design. The only downside when using 6000 lb/in^2 concrete is greater construction coordination, so that the 6000 lb/in^2 and lower strength concrete aren't placed in the wrong lateral force resisting element. Figure 2.2 and Figure 2.3 shows the lateral force resisting elements on both the northern and eastern sides. For better visualization of the elements with 6000 lb/in^2 concrete Figure 2.4 – on the following page shows 6000 lb/in^2 concrete highlighted blue, while elements using the lower strength concrete are highlighted red.

Figure 2.2, Lateral Force Resisting Elements at East Side Source: Oliver, Glidden, Spina & Partners



Figure 2.3, Lateral Force Resisting Elements at North Side Source: Oliver, Glidden, Spina & Partners

Figure 2.4, 6000 lb/in2 (Grey) and Lower Strength Concrete (Red) Source: Oliver, Glidden, Spina & Partners

In design checks by hand and ETABS it was verified that that the torsional irregularity had been eliminated with the addition of elements AV5-X1, AV5-Y1, and AV5-Y2. Both the center of mass and rigidity in the hand calculations and ETABS computer were nearly identical. Table 2.1, Table 2.2, and Table 2.3 contains the center of mass and rigidity derived by hand, as well as outputted

by ETABS. This further permitted the use of ETABS output to design the individual lateral force resisting elements in RAM Elements.

Table 2.1, Formatted ETABS Center of Mass and Center of Rigidity Output								
Story	Diaphragm	Diaphragm MassX MassY XCM YCM XCR Y						
STORY6	D1	101.0603	101.0603	114.75	58.44	120.61	64.29	
STORY5	D1	97.614	97.614	114.79	58.9	121.34	64.13	
STORY4	D1	98.0577	98.0577	114.79	58.9	121.78	63.52	
STORY3	D1	99.8325	99.8325	114.79	58.9	121.71	62.23	
STORY2	D1	101.6073	101.6073	114.79	58.9	118.51	59.14	
STORY1	D1	95.327	95.327	114.69	58.72	112.77	54.76	

Table 2.2, Calculated Center of Mass						
Floor Type	Component	Area (ft ²)	Center of	of Mass		
Floor Type	Component	Alea (It)	x (ft)	y (ft)		
А			110.07	59.34		
	A1	11324.15	95.31	30.38		
	AV1	-224.55	36.84	44.54		
	AV2	-223.83	94.51	41.58		
	AV3	-113.50	134.88	34.42		
	AV4	-224.55	198.83	49.26		
	A2	2362.09	208.07	30.38		
	AV5	-1143.33	213.51	20.42		
	A3	3069.82	27.09	89.09		
	A4	1394.00	66.92	88.09		
	A5	1115.96	91.63	84.09		
	A6	949.17	114.76	82.01		
	A7	1115.96	137.88	84.09		
	A8	1394.00	162.58	88.09		
	A9	3069.82	202.42	89.09		
В			114.69	58.72		
	B1	13701.04	114.76	30.38		
	BV1	-224.55	36.84	44.54		
	BV2	-223.83	94.51	41.58		
	BV3	-503.6	119.39	41.21		
	BV4	-5.75	128.09	34.92		
	BV5	-113.50	134.88	34.42		
	BV6	-224.55	198.83	49.26		

	B2	3069.82	27.09	89.09
	B3	6623.78	114.76	88.09
	BV7	-757.99	114.76	76.48
	B4	3069.82	202.42	89.09
С			114.79	58.90
	C1	13701.04	114.76	30.38
	CV1	-224.55	36.84	44.54
	CV2	-223.83	94.51	41.58
	CV3	-113.50	134.88	34.42
	CV4	-224.55	198.83	49.26
	C2	3069.82	27.09	89.09
	C3	6623.78	114.76	88.09
	C4	3069.82	202.42	89.09

Table 2.3, Calculated Center of Rigidity						
Lateral Resisting Element			Element Center		Global Center of	
Designation	Resisting Direction	Stiffness	of Rig	gidity	Rigi	dity
Designation	Resisting Direction		x (ft)	y (ft)	x (ft)	y (ft)
AV1-X1	Х	15.18	36.84	34.33		
AV1-Y1	Y	122.10	42.34	44.54		
AV2-Y1	Y	248.14	90.26	41.59		
AV2-X1	Х	7.53	94.68	54.76		
AV3-Y1	Y	31.20	130.34	34.42		
AV3-X1	Х	8.23	134.88	40.67	117.18	63.61
AV3-Y2	Y	31.20	139.42	34.42	11/.10	03.01
AV4-Y1	Y	21.79	188.63	49.26		
AV4-X1	Х	112.61	199.17	54.76		
AV5-Y1	Y	31.716	229.17			
AV5-Y2	Y	91.324	226.83			
AV5-X1	Х	31.726		117.08		

Though the redesign eliminated code defined torsional irregularity, it redistributed the lateral forces among the existing lateral force resisting elements. When comparing the lateral forces acting on each lateral force resisting element before and the after redistribution, the general change isn't so significant, the majority of the existing lateral force resisting need not be redesigned. Lateral force tabulations, both before and after the redistribution can be compared in Table 2.4.

Table 2.4, Comparison of Base Shear of Lateral Force Resisting Elements (Values were derived from hand calculations and checked with ETABS)							
Element	V _{base} (Kip) V _{base} (Kip)						
Element	Original	Design I	Element	Original	Design I		
AV1-X1	76.5	62.0	AV3-Y2	121.7	102.0		
AV1-Y1	325.0	229.1	AV4-Y1	84.0	89.5		
AV2-Y1	304.4	335.4	AV4-X1	159.6	187.4		
AV2-X1	63.9	43.7	AV5-X1	N/A	14.8		
AV3-Y1	126.6	102.0	AV5-Y1	N/A	145.9		
AV3-X1	121.7	33.4	AV5-Y2	N/A	23.8		

Reinforced concrete code, ACI 318-11, was used to design and detail the reinforcement within the perimeter lateral force resisting elements. Continuing the theme of commonality and construction ease with the existing lateral force resisting elements, 60,000 lb/in² rebar was used.

In order to facilitate a durable and safe design, decisions were made, and are as follows:

- 1. Clear cover between the exterior concrete face and rebar was set to 2"
- 2. All flexural reinforcements are the same size across all lateral force resisting elements
- 3. All shear reinforcements are the same size across all lateral force resisting elements
- 4. All lateral force resisting elements are fixed at the base
- 5. During construction, lateral force elements are braced against wind until elements of the floor diaphragm are in place
- 6. No generally detrimental construction related defects
- 7. Lateral force resisting elements take no axial loads other than self-weight
- 8. Two layer of flexural rebar
- 9. $\varepsilon_t = 0.005$ for flexural reinforcement furthest from the neutral axis

LMOB is located no more than 3 miles from the Gulf of Mexico. The close proximity to a source of chlorides is significant because chlorides corrode the steel used in the reinforcement. It was this reason to increase the exterior concrete clear cover to 2" – in lieu of the typical 1-1/2". Increasing the exterior concrete clear cover also reduces the detrimental effects of carbonation, which will be covered in greater detail in the façade breadth section. Structural steel columns – at the perimeter of LMOB – and intersect perimeter lateral force resisting elements are cast integrally with the perimeter lateral force resisting elements. The outcome is reduced impact on the architectural plan. The imbedded structural steel columns solely handle the gravity loads. Any potential interaction between the two systems, in sharing gravity and lateral loads are ignored.

All lateral force resisting elements incorporate two layers of flexural reinforcement. When coupled with hoops, this reinforcement cage confines the core concrete. Beneficial characteristics of the configuration are added resistance to damage and reduced hysteresis strength degradation. Shear

reinforcement hoops continue until 4" from the foundations, even though ACI 318-11 states that these are not necessary at distances less than *d* from the face of support. Continuing the shear reinforcement hoops until they're 4" from the foundations confines the concrete core at the lateral force resisting element's base and avoids possible rebar buckling during the construction process. Top reinforcement is required, due to the likelihood that the wind load will reverse. The other reason is to strain the flexural reinforcement to 0.005, in order to use $\Phi = 0.9$.

As in the technical reports, the flexural reinforcement design was determined using the RAM Elements. One spot check on the design of element AV1-Y1 was done for Design I's flexural reinforcement. The spot check revealed that designing lateral force resisting elements as accurate as designing them by hand. Design output by RAM Elements can be referenced in Appendix H.

Table 2.5, Hoop Design Criteria for Interior Lateral Force Resisting Elements						
Element	Story	Pier	A_{g} (in ²)	0.1 F' _c A _g (Kip)	Hoop Criteria	
S	STORY6				F	
	STORY5				F	
AV1-X1	STORY4	P1X	992	396.8	F	
Αν1-Λ1	STORY3	PIA	992	390.8	С	
	STORY2				С	
	STORY1				С	
	STORY6				F	
	STORY5				F	
AV1-Y1	STORY4	D1V	2016	806.4	F	
AV1-11	STORY3	P1Y	2010	806.4	F	
	STORY2				F	
	STORY1				F	
	STORY6				F	
	STORY5				F	
AV2-Y1	STORY4	P2Y	2592	1036.8	F	
AV2-11	STORY3	P2 I	2392	1030.8	F	
	STORY2				F	
	STORY1				F	
	STORY6				F	
	STORY5				С	
AV2-X1	STORY4	DJV	784	313.6	С	
Αν2-ΛΙ	STORY3	P2X	/ 04	515.0	С	
	STORY2				С	
	STORY1				С	
AV3-X1	STORY6	P3X	808	323.2	F	

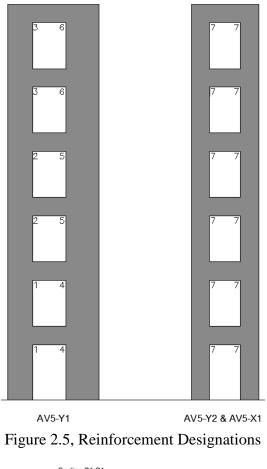

STORY5 STORY4FSTORY3CSTORY2CSTORY1CSTORY1CSTORY1CSTORY5 STORY5FSTORY5 STORY31264STORY2FSTORY3P3Y21264505.6STORY1CSTORY2CSTORY3P3Y2STORY4 STORY1CSTORY5CSTORY1CSTORY1FSTORY5FSTORY6F	
STORY3 STORY2CSTORY2CSTORY1CSTORY1CAV3-Y2STORY6 STORY3 STORY2FSTORY3 STORY1P3Y21264505.6CCCCCCCCSTORY1C	
STORY2 STORY1CSTORY1CSTORY1CAV3-Y2STORY5 STORY3FSTORY3 STORY1P3Y21264505.6CCCCCCCC	
STORY1CSTORY6FSTORY5FSTORY4P3Y2STORY3P3Y2STORY21264STORY1CC	
$\begin{array}{c c} STORY6 \\ STORY5 \\ AV3-Y2 \\ \hline STORY4 \\ STORY3 \\ \hline STORY2 \\ \hline STORY1 \end{array} P3Y2 \begin{array}{c} 1264 \\ 1264 \\ \hline 505.6 \\ \hline F \\ 505.6 \\ \hline C \\ \hline \end{array}$	
AV3-Y2STORY5 STORY4 STORY3 STORY2P3Y21264505.6FAV3-Y2STORY3 STORY2P3Y21264505.6CCCCCC	
AV3-Y2 STORY4 STORY3 STORY2 STORY1 P3Y2 1264 505.6 F AV3-Y2 STORY3 STORY1 P3Y2 1264 505.6 C	
AV3-Y2 STORY3 P3Y2 1264 505.6 C STORY2 STORY1 C C C	
STORY3 C STORY2 C STORY1 C	
STORY1 C	
STORY6 F	
STORY5 F	
AV4-Y1 STORY4 P4Y 1120 448 F	
Av4-11 STORY3 F41 1120 448 F F F F	
STORY2 C	
STORY1 C	
STORY6 F	
STORY5 F	
AV4-X1 STORY4 P4X 1960 784 F	
F	
STORY2 C	
STORY1 C	

Table 2.6, Hoop Design Criteria for Perimeter Lateral Force Resisting Elements							
Element	Story	Pier	$A_{g}(in^{2})$	0.1 F' _c A _g (Kip)	Hoop Criteria		
	STORY6	P5X1	465		F		
	STORY5			279	F		
	STORY4				F		
	STORY3				F		
	STORY2				F		
AV5-X1	STORY1				F		
	STORY6	P5X2	430	258	F		
	STORY5				F		
	STORY4				F		
	STORY3				F		
	STORY2				F		
	STORY1				F		
AV5-Y1	STORY6	P5Y1	465	279	F		

1	STORY5		l		F
	STORY4				F
	STORY3				F
	STORY2				F
	STORY1				F
	STORY6				F
	STORY5	P5Y2	430		F
	STORY4			259	F
	STORY3			258	F
	STORY2				F
	STORY1				F
	STORY6	P5Y3	645		F
	STORY5				F
	STORY4			387	F
	STORY3			307	С
	STORY2				С
AV5-Y2	STORY1				С
AVJ-12	STORY6	Р5Ү4	855		F
	STORY5				F
	STORY4			513	F
	STORY3			515	F
	STORY2				С
	STORY1				С

Only the shear and hoop reinforcement were done outside of RAM Elements, through the assistance of Microsoft Excel. Piers in the perimeter lateral force resisting elements experience axial loads stemming from the wind loads, depending on magnitude of these axial loads – the hoops are either designed according to the compression or flexural member requirements in ACI 318-11. Table 2.5 and Table 2.6 shows the design criteria for the hoops – C represents compression criteria, while F is flexural criteria. It is evident from Table 2.5 and Table 2.6, that most lateral force resisting elements follows the flexural criteria. Design calculations for the hoops can be found in Appendix H.

Below – in Figure 2.5 to Figure 2.12 – are the reinforcement detailing for elements AV5-X1, AV5-Y1, and AV5-Y2.

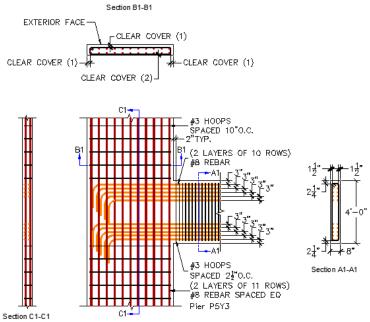
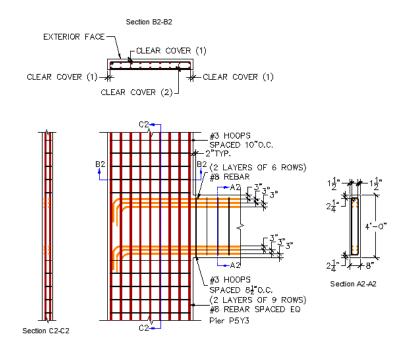



Figure 2.6, Reinforcement Detail 1

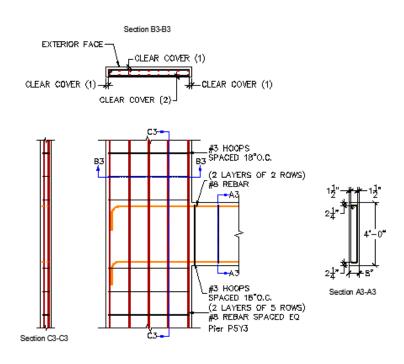
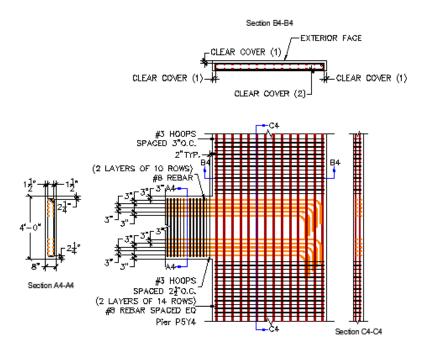



Figure 2.8, Reinforcement Detail 3

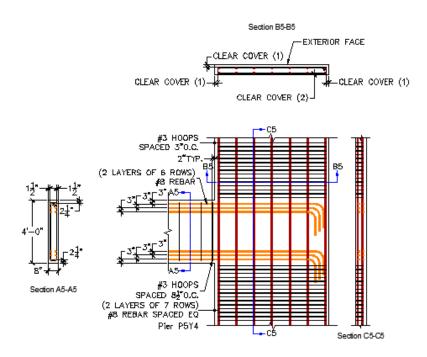
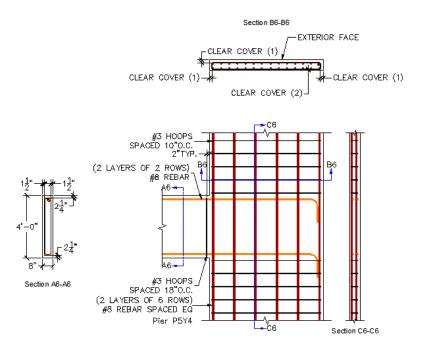



Figure 2.10, Reinforcement Detail 5

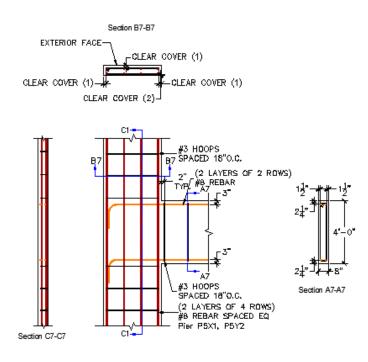


Figure 2.12, Reinforcement Detail 7

Design II

The second design revolves around tilt-up walls. Essentially, tilt-up is a system where cast on site concrete walls are lifted into position and secured. There is no limit on building square footage, when using tilt-up walls – as long as there is enough space on-site to cast the concrete walls. Building height however, is limited by the crane capacity and slenderness of the tilt-up wall members. To date the tallest and heaviest tilt-up wall panels lifted into place are 96' and 154 tons, respectively (TCA, 2013). Traditionally tilt-up walls were used for warehouses and industrial buildings, but recently have gain popularity in Florida as a cost effective option in commercial buildings – like offices. This is based on the top 10 Tilt-Up wall height and heaviest Tilt-Up wall panels lifted monolithically, the majority of whom are located in Florida (TCA, 2013).

In the case of LMOB, the entire lateral and perimeter gravity loads were handled by the tilt-up walls. Since the lateral force resisting tilt-up wall sections handled the entire lateral load, there is no need for interior lateral force resisting elements. This frees up the interior space arrangement, allowing more flexible room arrangements. Additionally, there is greater torsional resistance of perimeter lateral force resisting elements, in rectilinear buildings when compared to internally placed lateral force resisting elements, due to the greater moment arm between the building's center and the perimeter lateral force resisting elements. The efficient performance translates to reduced number of required lateral load resisting elements. In LMOB, only a few tilt-up wall sections were required to resist lateral loads and tackle code defined torsional irregularity, the result is that a majority of the tilt-up wall sections were designed as gravity load resisting members only. A secondary function of the tilt-up walls used is that they serve as back-up walls for the building's cladding.

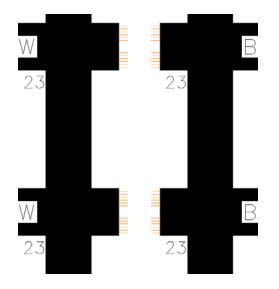


Figure 2.13, General Joint between Tilt-Up Wall Panels

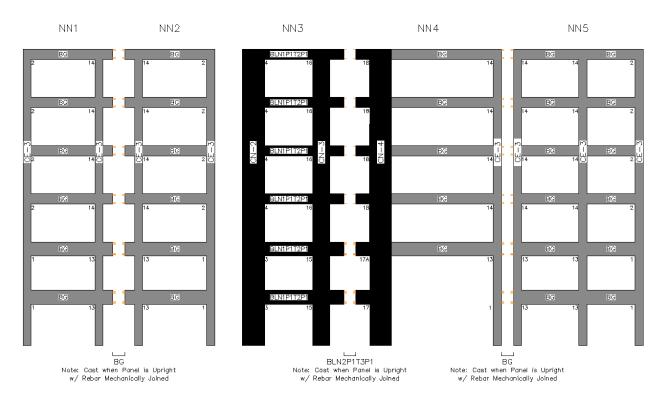


Figure 2.14, Joint Locations and Respective North Tilt-Up Wall Panels Designations

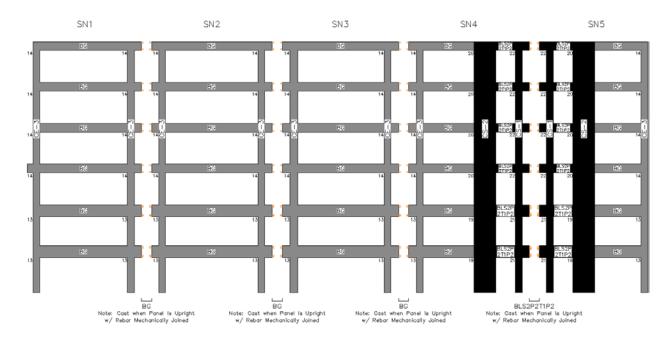


Figure 2.15, Joint Locations and Respective South Tilt-Up Wall Panels Designations

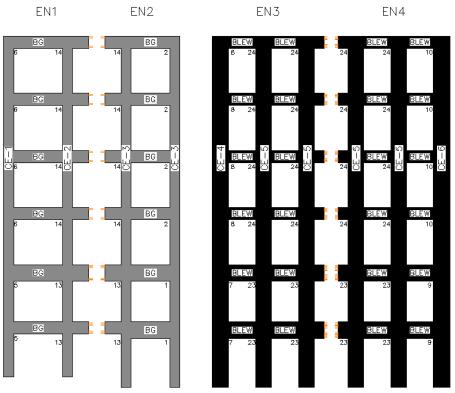


Figure 2.16, Joint Locations and Respective East Tilt-Up Wall Panels Designations

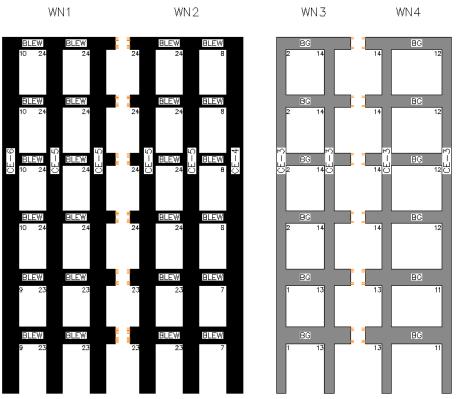


Figure 2.17, Joint Locations and Respective West Tilt-Up Wall Panels Designations

Major obstacles were encountered in designing a durable and constructible tilt-up structure. One of them is the need for greater protection of the reinforcement from carbonation and chloride attack, the latter is ever present in the Largo, FL – where LMOB is located. Tilt-up panel weight and dimensions was a lingering issue and resulted in casting some lateral force resisting elements in two or more parts. The multiple parts for the lateral force resisting elements were only joined once they were lifted. Joining the parts of the tilt-up elements starts with joining the rebar between the panels with mechanical splice connectors and then encasing them with cast-in-place concrete. An illustration of the joint between the tilt-up wall panels is and their locations shown in Figure 2.13 to Figure 2.18.

Other pervading obstacles include: temporary bracing and structural continuity. Structural continuity typically ensures that the structure is more resistant to damage, where the surrounding/neighboring undamaged elements can take to load of the damaged element. Structural continuity eventually manifested into general connection detailing. Let it be clear, that the general connection detailing is not a design but an idea to achieve structural continuity.

Lateral force resisting elements locations were selected based upon the desire to eliminate torsional irregularity. Symmetry played a large factor, where panels EN3 and EN4 (A2-Y1) – on the eastern façade – as well as panels WN1 and WN2 (A1-Y1) – on the western façade, were chosen to resist lateral loads in the north and south directions. Selection of lateral force resisting elements to resist lateral loads in the east and west directions was more difficult, since none of the panels on either north or south faces were the same. Eventually it was settled that panel NN3 and a portion of NN4 (A5-X1) – on the north façade – along with portions of panel SN4 and SN5 (A5-X1) – on the south façade – would resist lateral loads in the east and west directions. Shaded black in Figure 2.14 to Figure 2.17, are the lateral load resisting elements.

It was confirmed by both calculations and ETABS modeling that there was no torsional irregularity. Center of mass and rigidity in the calculations and ETABS computer were found to be within 5%. Table 2.7, Table 2.8, and Table 2.9 contains the center of mass and rigidity derived by calculations, as well as outputted by ETABS. The outcome further permitted the use of ETABS output to design the individual lateral force resisting elements in RAM Elements.

Table 2.7, Formatted ETABS Center of Mass and Center of Rigidity Output							
Story	Diaphragm	MassX	MassY	XCM	YCM	XCR	YCR
STORY6	D1	101.5554	101.5554	114.77	58.42	116.8	59.52
STORY5	D1	98.4901	98.4901	114.83	58.89	117.01	59.08
STORY4	D1	98.9337	98.9337	114.83	58.89	117.23	58.76
STORY3	D1	100.7083	100.7083	114.83	58.89	117.4	58.6
STORY2	D1	102.4829	102.4829	114.83	58.89	117.47	58.77
STORY1	D1	97.5386	97.5386	114.74	58.71	116.62	59.1

Table 2.8, Calculated Center of Mass					
Eleor Type	Component	Area (ft ²)	Center of Mass		
Floor Type	Component	Alea (It)	x (ft)	y (ft)	
А			110.07	59.34	
	A1	11324.15	95.31	30.38	
	AV1	-224.55	36.84	44.54	
	AV2	-223.83	94.51	41.58	
	AV3	-113.50	134.88	34.42	
	AV4	-224.55	198.83	49.26	
	A2	2362.09	208.07	30.38	
	AV5	-1143.33	213.51	20.42	
	A3	3069.82	27.09	89.09	
	A4	1394.00	66.92	88.09	
	A5	1115.96	91.63	84.09	
	A6	949.17	114.76	82.01	
	A7	1115.96	137.88	84.09	
	A8	1394.00	162.58	88.09	
	A9	3069.82	202.42	89.09	
В			114.69	58.72	
	B1	13701.04	114.76	30.38	
	BV1	-224.55	36.84	44.54	
	BV2	-223.83	94.51	41.58	
	BV3	-503.6	119.39	41.21	
	BV4	-5.75	128.09	34.92	
	BV5	-113.50	134.88	34.42	
	BV6	-224.55	198.83	49.26	
	B2	3069.82	27.09	89.09	
	B3	6623.78	114.76	88.09	
	BV7	-757.99	114.76	76.48	
	B4	3069.82	202.42	89.09	
С			114.79	58.90	
	C1	13701.04	114.76	30.38	
	CV1	-224.55	36.84	44.54	
	CV2	-223.83	94.51	41.58	
	CV3	-113.50	134.88	34.42	
	CV4	-224.55	198.83	49.26	
	C2	3069.82	27.09	89.09	
	C3	6623.78	114.76	88.09	
	C4	3069.82	202.42	89.09	

Table 2.9, Calculated Center of Rigidity						
Lateral Resisting Element		Stiffnagg	Element Center		Global Center of	
Designation	Resisting Direction	Stiffness, K (kip/in)	of Rigidity		Rigidity	
			x (ft)	y (ft)	x (ft)	y (ft)
A1-Y1	Y	291.715	0.42	88.75	114.80	61.30
A2-Y1	Y	291.715	229.08	88.75		
A5-X1	Х	215.657	152.38	115.00		
A6-X1	Х	190.186	179.00	0.42		

Unlike Design I, higher strength concrete was not required for the first story – to handle the soft story irregularity. Instead the lower 2' of the first story is filled with concrete and reinforced. This is only done for the lateral force resisting elements. The result is, equal column height for all the stories. ETABS modeling showed that there was no code defined soft story irregularity, after the modification.

Reinforced concrete code ACI 318-11 and published 2006 Tilt-Up Construction and Design Manual was used to design and detail the reinforcement within the perimeter lateral force resisting tilt-Up sections. Unlike Design I, certain tilt-up wall panels require the use of high strength reinforcing steel (75,000lb/in²). The primary reason is not strength but reinforcement congestion – specifically for tilt-up panels SN1, SN2, and SN3. Everywhere else the reinforcement is 60,000 lb/in². The use of two different reinforcement grades is a construction coordination problem, to ensure that the high strength reinforcement isn't placed in the wrong panels. The result of wrong placement is panel failure during the tilt-up process. To get around this, the high strength reinforcing steel is delivered and assembled into rebar cages before the 60,000 lb/in² is delivered.

Design assumptions and decisions made in Design II are as follows:

- 1. Clear cover between the exterior concrete face and rebar was set to 2"
- 2. All lateral force resisting elements are modeled as pin at the base
- 3. All tilt-up panels are braced against wind until elements of the floor diaphragm are in place
- 4. No generally detrimental construction related defects
- 5. Two layers of flexural rebar to reduce hysteresis strength degradation
- 6. Continuing the shear reinforcement hoops until they're 4" from the foundations
- 7. $\varepsilon_t = 0.005$ for flexural reinforcement furthest from the neutral axis

Following the lead of Design I, all flexural reinforcement design was determined using the RAM Elements. To ensure modeling accuracy a spot check on the design of element CE-5 was done. The spot check revealed that designing lateral force resisting elements as accurate as designing them by hand. The spot check and output by RAM Elements can be found in the appendix.

It was determined that the bending, combined loading, and secondary effects during the lifting process controlled over the loads when the building is finished and occupied. The result is designing by hand – the flexural and out-plane shear – because RAM Elements don't consider the lifting process. Influence lines were used to determine the lifting points which would minimize the bending moments which the tilt-up panels will experience. Tilt-up walls were simplified as beams with a unit width of 1'-0". Figure 2.18 shows the lifting point configuration that'll minimize bending moments. The last step was designing the tilt-up wall panels for the controlling loads during the lifting process. Final reinforcement details can be found in Figure 2.19 to Figure 2.43, located below. For more information on tilt-up design for LMOB, see the appendix.

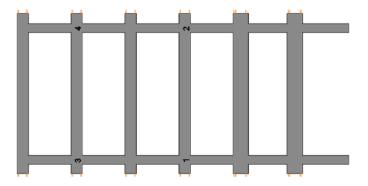
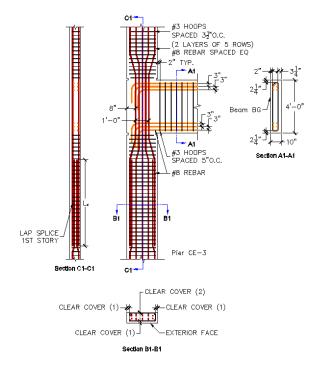
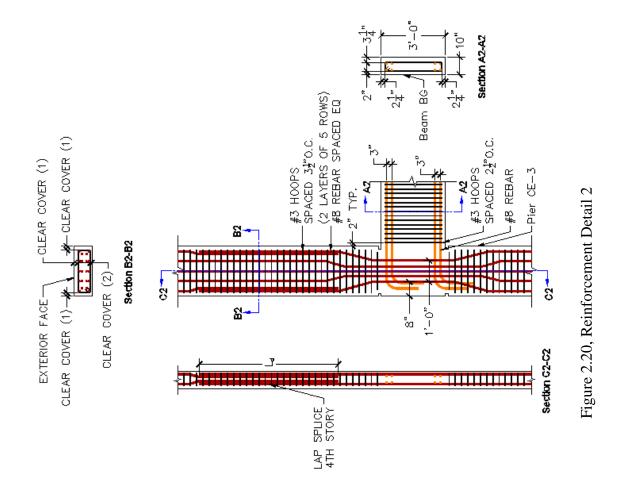
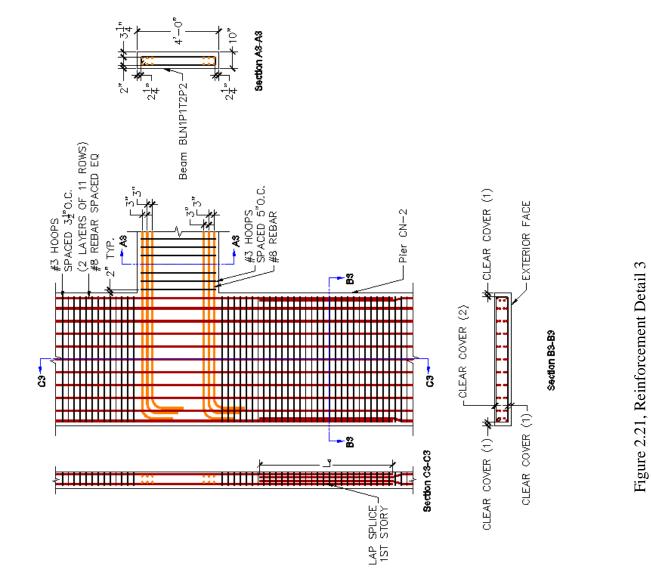
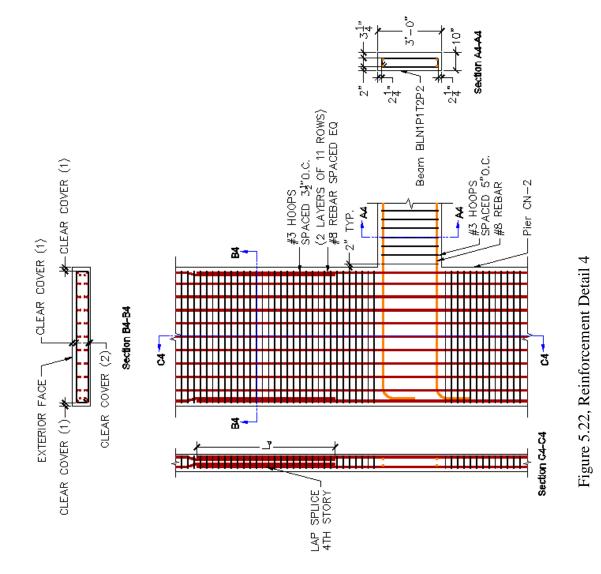
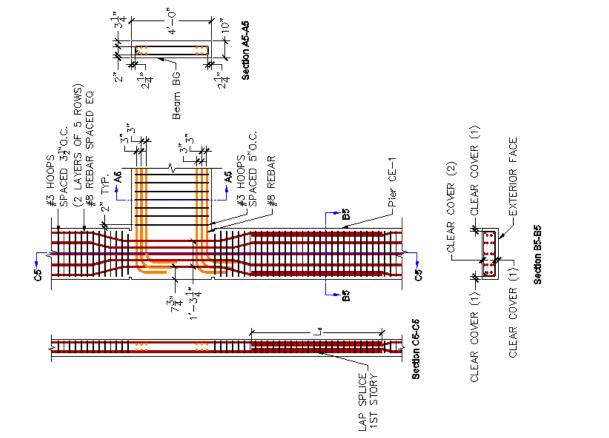
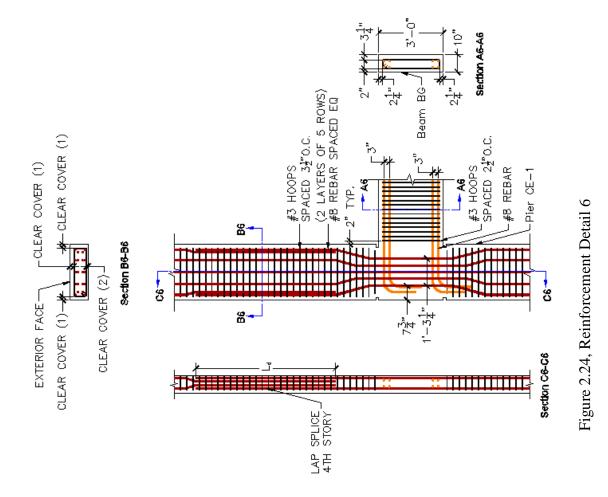


Figure 2.18, Panel Lifting Points

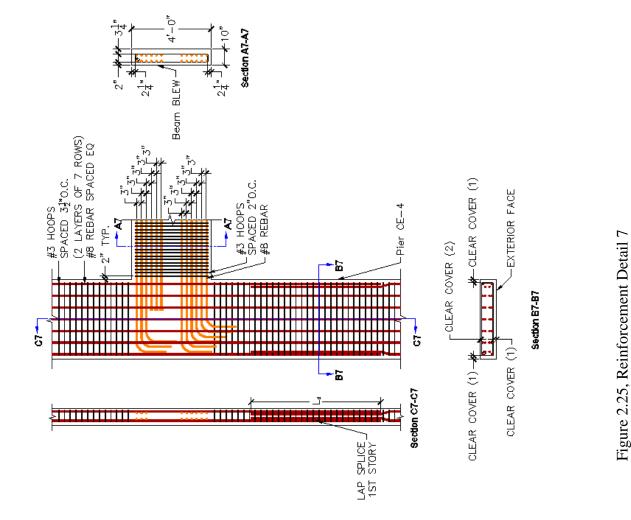





Figure 2.19, Reinforcement Detail 1

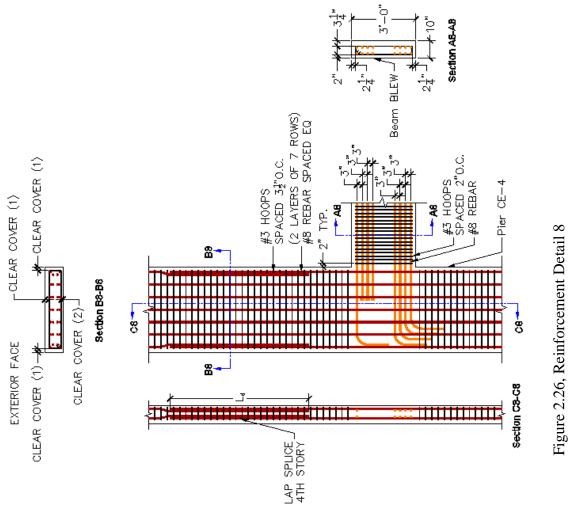

 \sim


 \bowtie

 \triangleleft



L



G

 \sim

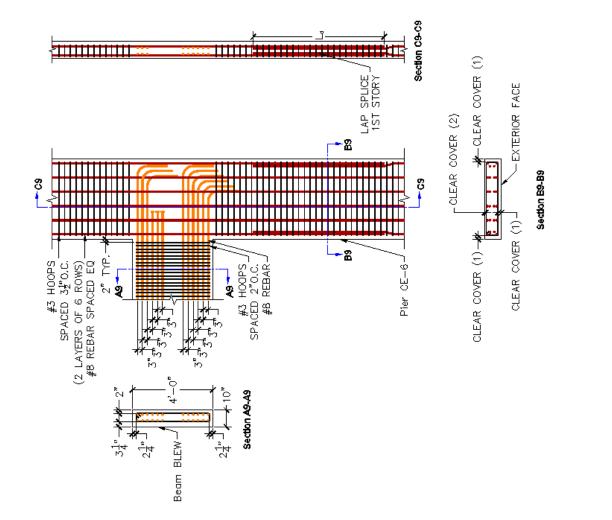
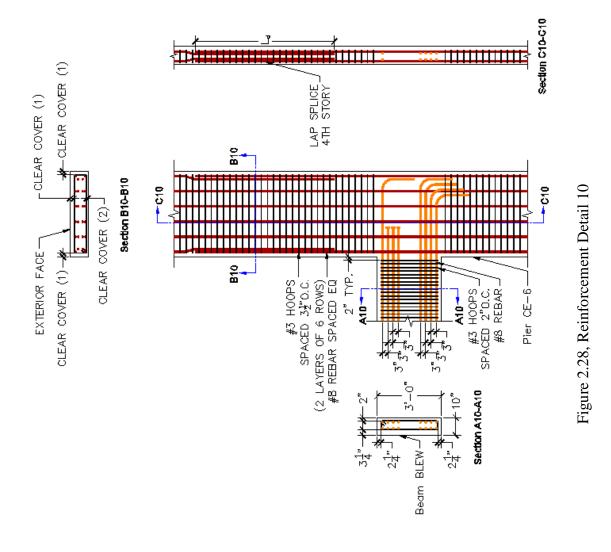
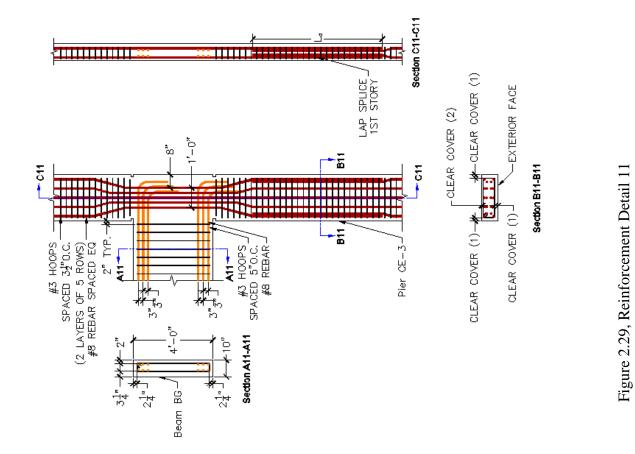
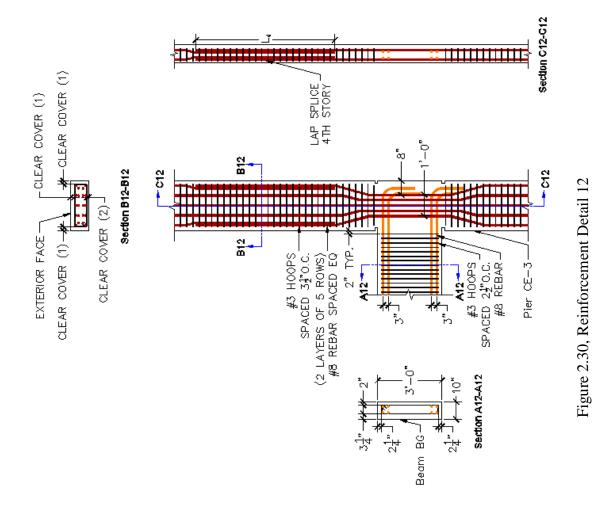



Figure 2.27, Reinforcement Detail 9


Thesis Report

 \bigcirc


Thesis Report

 \bigcirc

Thesis Report

~____

 \sim

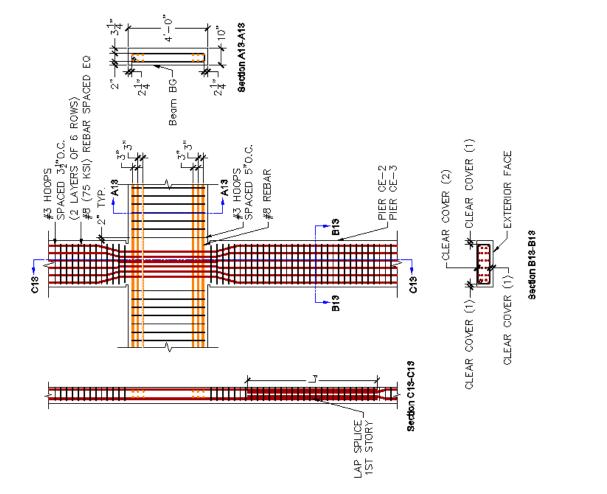
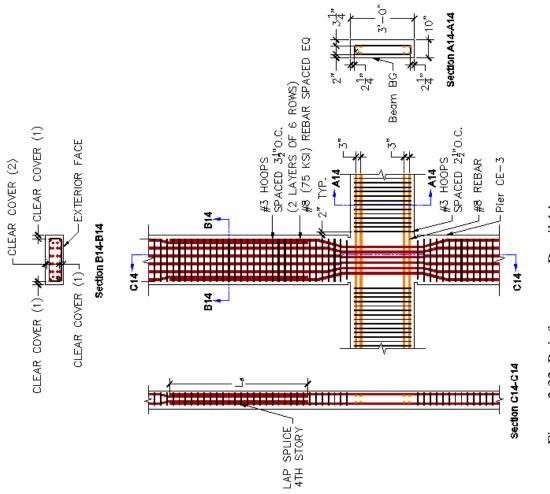
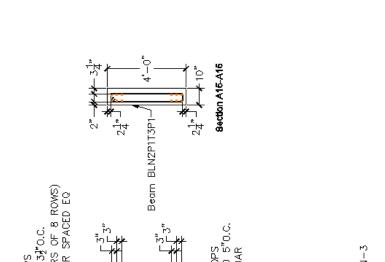
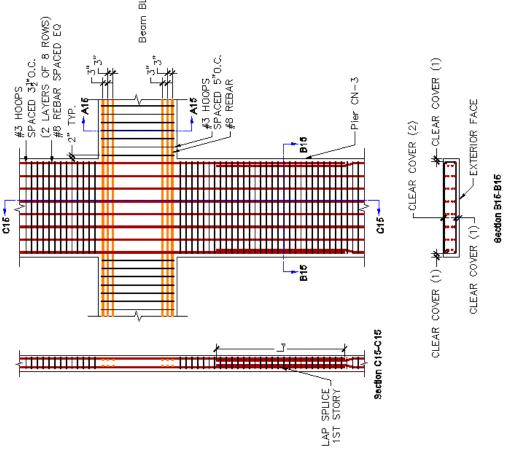
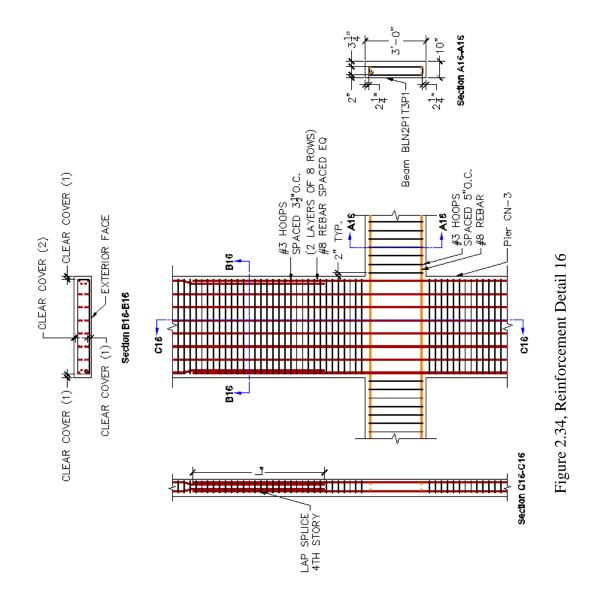


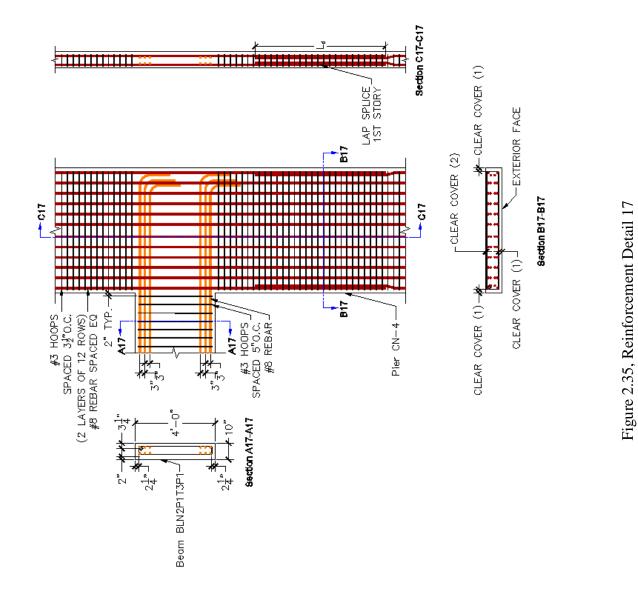
Figure 2.31, Reinforcement Detail 13

[] _____

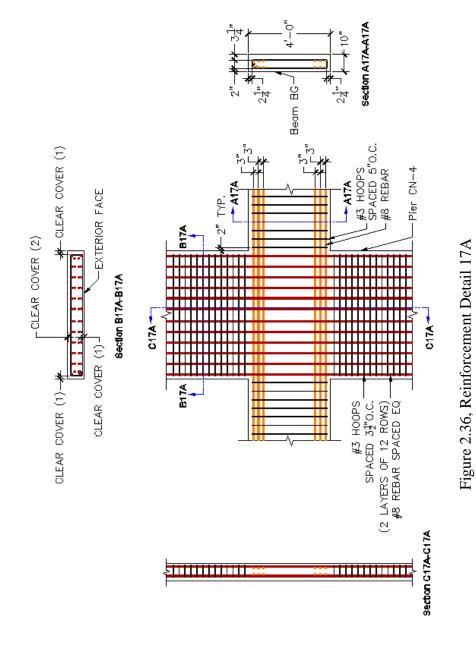




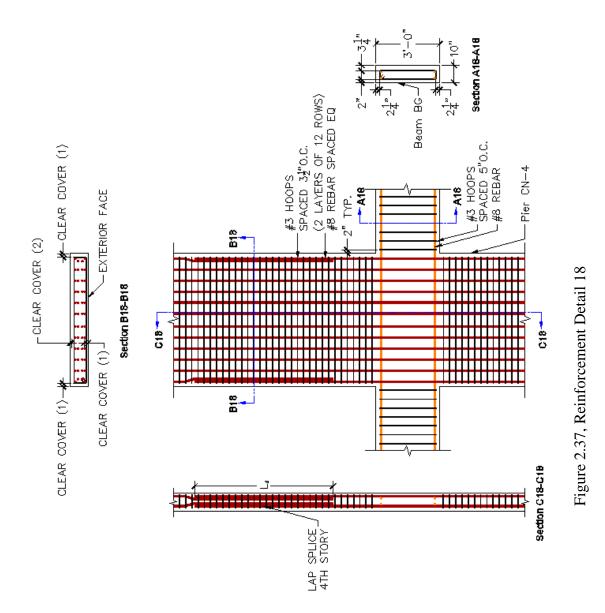

Figure 2.32, Reinforcement Detail 14

 $\stackrel{-}{\triangleleft}$

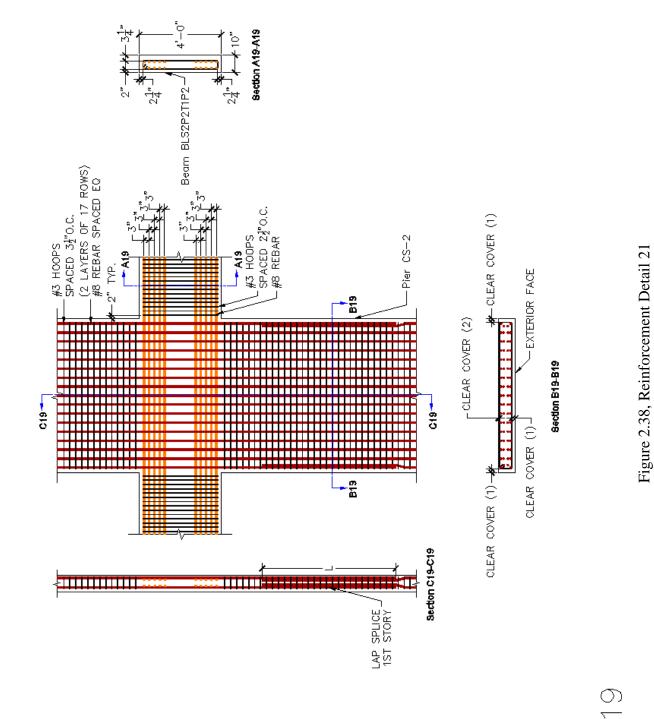


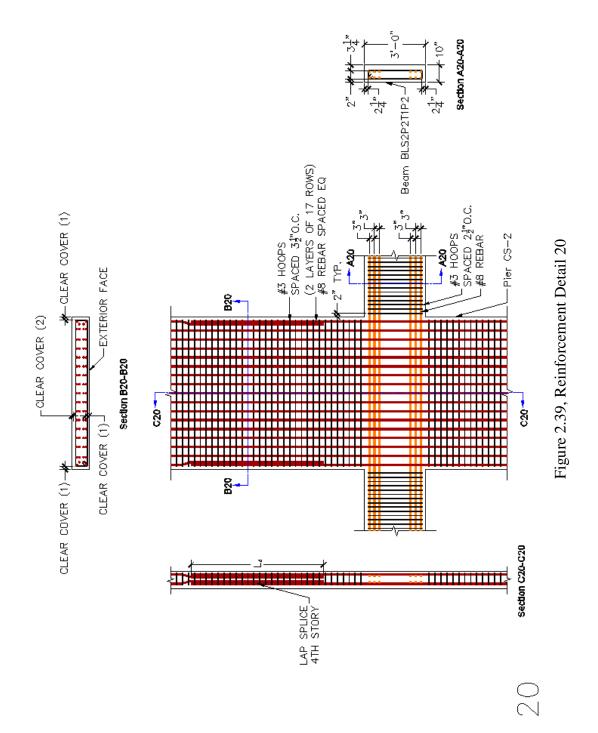
LΩ ↓

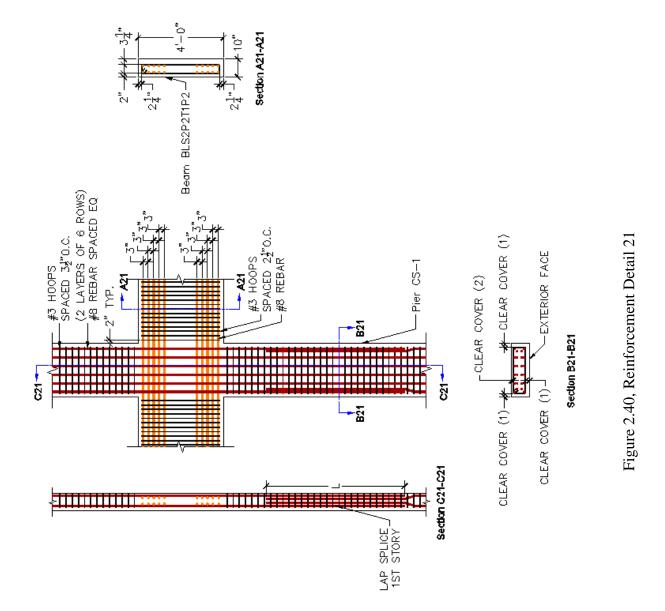



 \bigcirc

Thesis Report


 $\overline{)}$




 \sim

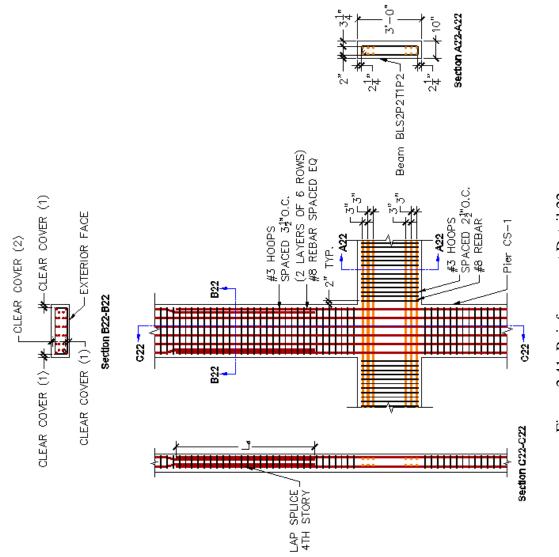
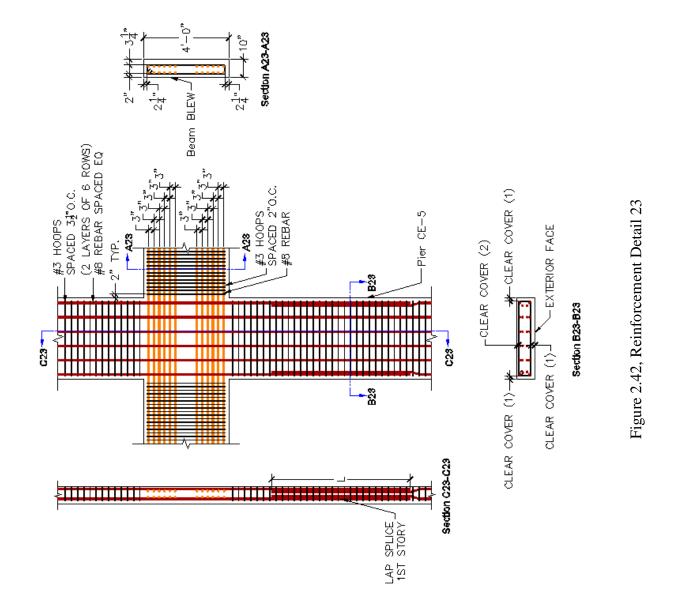



Figure 2.41, Reinforcement Detail 22

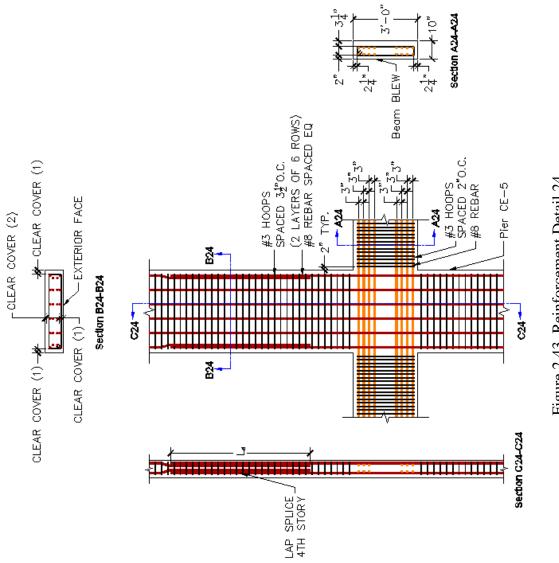


Figure 2.43, Reinforcement Detail 24

 \mathbb{A}

Structural Re-Design Evaluation

The redesigns were successful in taming torsion irregularity and soft story irregularity. Design II was found to be more effective against torsional effects and controlling drift along the building's short direction. On the other hand Design I is likely far easier to construct and coordinate, arising from no need for large concrete casting areas nor moving structural components over 100 tons around the site. The only possible constructability issue with Design I is the use of multiple concrete grades (strengths), especially those used in the first story – to tackle soft story irregularity. Performance wise, Design I is stiffer than Design II and the original design in the building's long direction. This is verified by the fundamental building period (original = 0.72 seconds, Design I = 0.62 seconds, Design II = 0.65 seconds) and building drift in the long direction.

Construction Management Breadth

Construction management is a broad topic of study. To maintain focus only two aspects were explored, they are: site logistics and direct construction costs. The two mentioned aspects serve as evaluation criterions for the structural solutions and façade wall redesign.

Literature Review and Benchmarks

Site properties, safety requirements, and environmental regulations define the progression and type of construction. These considerations will be explored in the literature review.

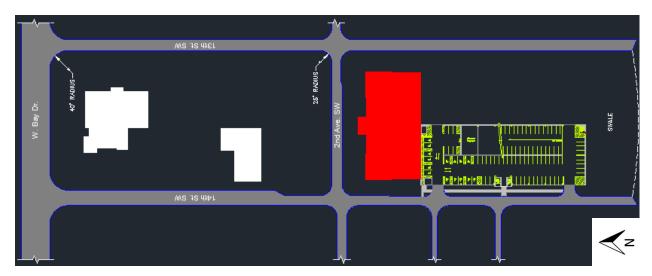


Figure 3.1, Major Roads and Facilities near LMOB

Table 3.1, Cargo Capacity and Turning Radius of Various Truck Types				
Source: Texas Department of Transportation Roadway Design Manual				
Truck Type	Maximum Cargo Length	Turning Radius for 90° Turn		
Single Unit – 20'-0" Wheelbase	22'-0"	42'-0''		
Semi-Truck – 23'-6" Wheelbase	30'-0"	40'-0''		
Semi-Truck – 31'-4" Wheelbase	37'-4"	45'-0''		
Semi-Truck – 42'-0" Wheelbase	42'-0"	45'-0''		

The site which LMOB is built on is part of a medical complex and is adjacent to commercial businesses. Since adjacent businesses will continue to operate, construction traffic and activities were planned to have minimal impact on the roads. Figure 3.1 shows the facilities and roads flanking LMOB. Location of the construction site also impacts building component sizes and matter which the building components arrive to the site. Table 3.1 and Figure 3.1 shows the turning radius of various vehicles and available turning radiuses on site, respectively. Vehicles accessing 14th Street SW and 13th Street SW from West Bay Drive using a right hand turn cannot exceed 40 ft. However, semi-trucks with up to a 42'-0" wheelbase can access 14th Street SW and 13th Street

SW from West Bay Drive using a left hand turn. Tertiary roads have small turning radiuses at the intersections, this effectively rules out using 2^{nd} Avenue SW as a location to offload material and equipment from single unit and semi-trucks.

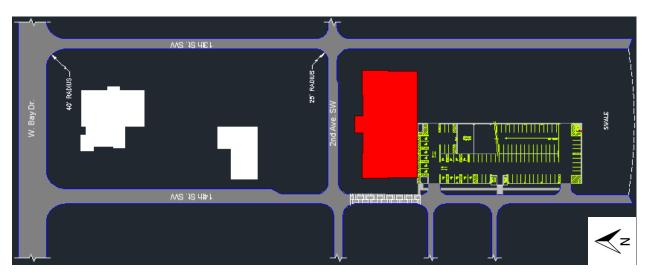


Figure 3.2, Option 1 for Offloading Area

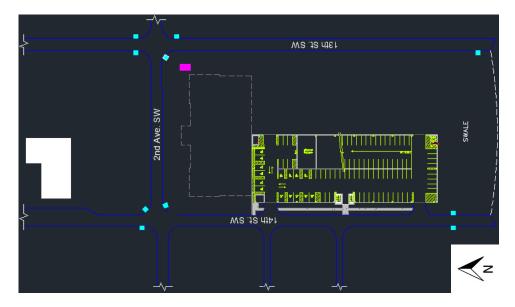


Figure 3.3, Locations of Storm Drains (Turquoise) and On-Site Utilities (Magenta)

Two options are left to offload material and equipment from single unit and semi-trucks, one is to close the hatched portion of 14th Street SW, as illustrated on Figure 3.2. Closing the highlighted portion of 14th Street SW will require a bypass through the adjacent parking lot and reduce patient accessibility to the parking deck. Reduced patient accessibility to the parking deck is not a concern because the parking deck will be renovated as LMOB is constructed. The second option is to prepare the area next to the shoulder of 13th Street SW. Option two requires additional time to properly outline, grade, and install drainage. Based on labor productivity values in R.S. Means

2013, it should take a minimum of one week to finish the tasked mentioned immediately above. Though extra time is required, there are benefits to the second option. One benefit is that the crane does not need to lift material and equipment over part of the parking structure. Lifting material and equipment over an adjacent facility requires the adjacent facility to be vacated, in order to prevent injury should the crane accidentally drops the load (OSHA 1926.704(e) and 1926.753(d)).

Further details of construction parking and detailed site logistics during each phase of construction will be covered later, now the site utilities and stormwater management will be addressed. Figure 3.3 illustrates the existing electric and water utilities on site, as well as the stormwater drains and drainage swale locations.

During construction, electrical and plumbing utilities will need to be made available to the construction crews. The first task is to extend the existing utilities to the north-east corner of the existing parking garage. Extending the existing utilities to the north-east corner of the existing parking garage is advantageous because it reduces material and labor costs by allowing both the parking garage renovation and LMOB construction to share a single electrical and plumbing feed. Another advantage is the close proximity between the extension and the future LMOB utility room. A second utility extension will be required for on-site construction management and will extend to the construction trailers. Unlike the permanent utility extension to the northeast corner of the existing parking garage, the extension to the construction trailers will be temporary.

Before construction begins the site will need to be fenced off and stormwater management systems will need to be installed. Fencing off the construction site will prevent non-construction entities from accessing the site and potentially injuring themselves. In addition, fencing off the construction site will reduce the possibility that construction equipment and materials are stolen or sabotaged by creating a secure area.

The importance of stormwater management lays in the need to reduce site erosion, stormwater sedimentation and pollution. Any violation or failure to comply is wholly responsible by the contractor. Enforcement is done through either a state environmental agency or the EPA, who will fine or close the site until stormwater management systems and strategies are in place (EPA Stormwater Management Guide). As defined by the *Clear Water Act* [Title 40 of the Code of Federal Regulations (CFR) 123.25(a)(9), 122.26(a), 122.26(b)(14)(x), and 122.26(b)(15)], stormwater management applies to site activities entailing clearing, grading, and excavating activities that disturbs more than one acre.

Stormwater runoff begins as rain or melting snow that does not percolate into the soil, instead it flows over land EPA Stormwater Management Guide). As stormwater runoff flows it picks up debris and pollutants in the way. The pollutants can range from trash and sediments to grease and other toxic chemicals.

The impact is monumental, whereby nearby waterways and habitats are harmed. This includes but not limited to maritime navigation impedance; cloudy water that prevents sunlight from reaching aquatic plants and clogs fish gills. In a year, runoff from a one acre construction site, without stormwater management systems, causes up to 45 tons of sediment and soil loss (EPA Stormwater Management Guide). As can be seen in Figure 3.4 runoff from construction sites, without stormwater management systems, is the largest land-based source of soil erosion. Impervious surfaces like roads increase the runoff quantity and velocity. Increasing the runoff quantity and velocity makes things worse with faster erosion rates and the potential for flooding.

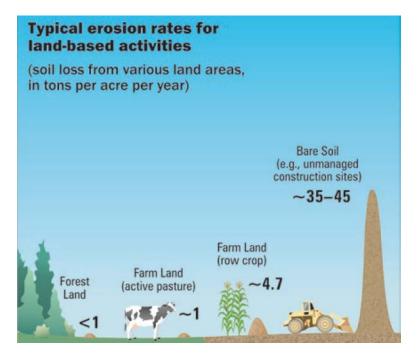


Figure 3.4, Typical Soil Loss/Erosion Rates of Selected Activities Source: EPA Stormwater Management Guide

Table 3.2, Stormwater Management Site Considerations					
Site Considerations	Climate	Topography	Soil	Vegetation	
Impact	 Seasons Rain frequency, intensity, and duration 	- Slope - Area exposed	 Compaction Permeability Structure of Soil 	 Proximity of plants can helps absorb the rain's kinetic energy Root system Binds the soil together Increases rain infiltration 	

Stormwater management is site specific, it means the climate, topography, soils, and vegetation have an impact. Table 3.2 shows the typical considerations concerning the climate, topography, soils, and vegetation.

Taming stormwater runoff is a two pronged approach. The first approach is structural based. Here physical barriers to erosion and sedimentation are built and used. The EPA recommends that any barrier should keep the soil in place, prevent it from moving. To do this there are four methods that reinforce each other.

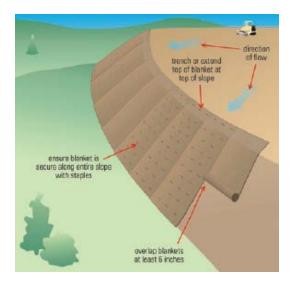


Figure 3.5, Erosion Control Blankets Source: *EPA Stormwater Management Guide*

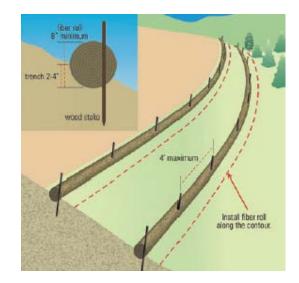


Figure 3.6, Erosion Control Fiber Rolls Source: EPA Stormwater Management Guide

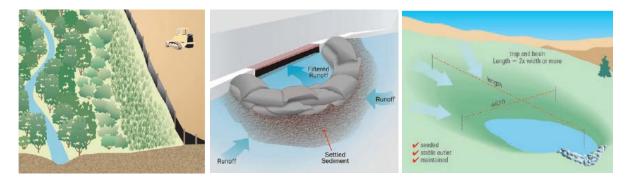


Figure 3.7, Silt Fence

Figure 3.8, Drain Filter Figure Source: *EPA Stormwater Management Guide*

Figure 3.9, Runoff Basin

First, stabilize the site quickly, especially exposed soils and slopes. Stabilizing the site can be done through control blankets, fiber rolls as shown in Figure 3.5 and Figure 3.6. Second, reduce impervious surfaces to promote rain infiltration into the ground. Next, the site perimeter must be controlled. Controlling the site perimeter is preventing runoff to contact disturbed areas of the construction site, filter any runoff originating from the site to capture sediment, or collect all runoff

into a sediment basin; these site perimeter controls are illustrated in Figure 3.7, Figure 3.8, and Figure 3.9 respectively. Lastly, the most important is to minimize the area and duration of exposed soils.

Site Logistics

Construction Site Organization and Phasing

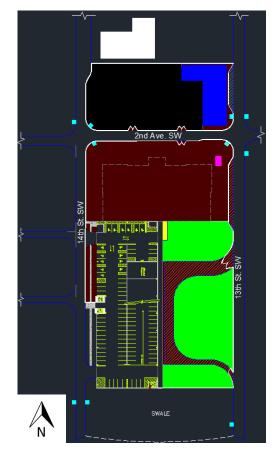


Figure 3.10, Phase I of Design I

Figure 3.11, Phase I of Design II

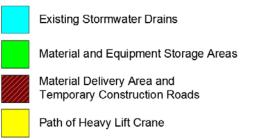


Figure 3.12, Color Key for Construction Phasing Diagrams

Site logistical details vary with changes in building design. The outcome is different construction phasing between Design I and Design II (Tilt-Up). Though there are differences between the site logistics of the two designs, similarities exist. For one, the site office is located at the corner of 2nd Ave. SW and 13th St. SW, as shown in Figure 3.10 and Figure 3.11. Refer to Figure 3.12, which is the color key, for construction phasing illustrations. One reason for placing the site office in the particular location is to reduce the distance between the construction site's utilities. There are no foreseeable problems in the construction trailer's placement because the site is an undeveloped lot 2nd Ave. SW and owned by the same owner – The Greenfield Group. The second reason is to increase the material and equipment storage area that is next to the parking garage. The purpose of the site office is to conduct on-site meetings and as centralized base for construction coordination.

Another similarity between the Design I and Design II site logistics is the position of the general purpose 5 ton crane. The general purpose 5 ton crane is positioned at the northeast corner of the parking garage to ensure that all positions within LMOBS footprint, material offloading areas, and a majority of the material storage areas can be reached without repositioning the crane.

Next, site logistics phases for Design I and Design II will be discussed in the following paragraphs. The site logistics phases for Design I is fairly constant and can be summed up by Figure 3.10. One reason is that the concrete shear walls are cast-in-place and cast upright, where the majority of the site area is used for the materials and equipment. In terms of the traffic flow through and adjacent to the site the goal is to ensure an uncongested and smooth flow. To achieve this, shoulders will be built along existing roads, as well as the placement of temporary construction roads. The shoulders on 13th St. SW serve to allow the delivery truck to pulls over and register their shipment with the superintendent in the construction trailer.

Once the shipment is registered the delivery truck progresses to the unloading area on-site. The unloading area is the wide stretch of temporary construction roads. Either the delivery can be offloaded to the on-site storage areas or directly placed into LMOB. Less wide temporary construction roads are primarily for directing delivery truck off the construction site. Delivery trucks get are directed towards the main roads by driving through the dirt road that is at the edge of the drainage swale and onto 14th St. SW to exit. Construction parking is located next to the construction trailer to minimize impact to the permanent parking lots adjacent to the surrounding businesses and increase the material and equipment storage areas next to the general purpose 5 ton crane.

Unlike the site logistics phases for Design I, Design II site logistics phases is far more complex and requires a longer construction time. Figure 3.13, Figure 3.14, and Figure 3.15 illustrates the change in site utilization as construction progresses. The complexity is primarily due in part to

casting the structural concrete walls flat on the ground and tilting them upright. Casting locations for the structural tilt-up walls are shaded charcoal grey in Figure 3.16.

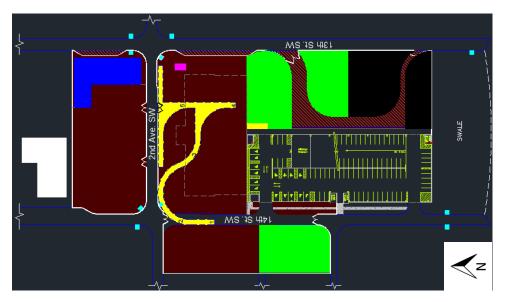


Figure 3.13, Phase II of Design II



Figure 3.14, Phase III of Design II

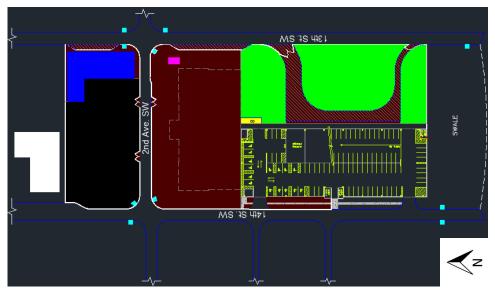


Figure 3.15, Phase IV of Design II

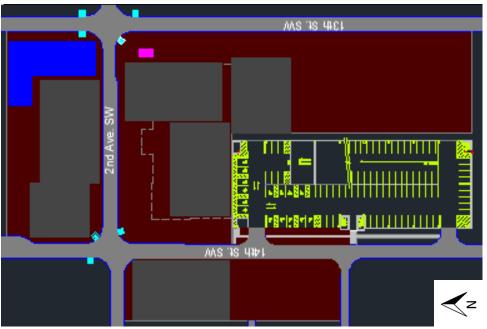


Figure 3.16, Casting Locations for Tilt-Up Walls

The first phase of construction consists of:

- 1. Preparing the site for construction
- 2. Take delivery and place construction trailers
- 3. Extend and install construction utilities
- 4. Construct formwork for the structural concrete tilt-up walls and foundation
- 5. Place concrete into formwork and let cure
- 6. Place temporary pre-cast concrete footings for temporary tilt-up supports

Once the concrete tilt-ups and footings are cured then the second phase begins. Phase two primarily consists of tilting up the structural concrete walls into place, erecting temporary supports, and casting the connections between the structural concrete tilt-up walls. The heavy lift crane will only be in use during the second phase. Each structural concrete tilt-up wall will be lifted in a certain sequence to reduce the number of time which the heavy lift crane changes location.

The order in which the structural concrete walls will be tilted up and temporary braced are listed below.

- 1. East structural concrete walls
- 2. Western half of the south structural concrete walls
- 3. Eastern half of the south structural concrete walls
- 4. West structural concrete walls
- 5. Western half of the north structural concrete walls
- 6. Eastern half of the north structural concrete walls

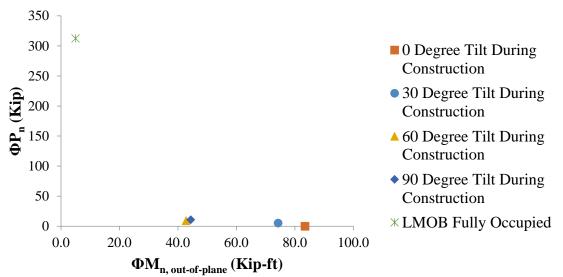
The path of the heavy lift crane is highlighted yellow in Figure 3.13 and Figure 3.14. As evident in Figure 3.14, 2nd Ave SW will be closed to regular traffic. Closing 2nd Ave SW allows the north structural concrete walls to be tilted into place with endangering non-construction traffic. For the week that 2nd Ave SW is closed non-construction traffic will be rerouted to use the dirt road at the edge of the swale.

In the final phase will entail a reduction the construction site and several relocations. Storage area to the west of 14th St. SW will be relocated to the parking lot in the second phase, while the parking lot in the second phase will be moved next to the construction trailers as seen in Figure 3.15. The heavy lift crane will be demobilized; in its place will be a general purpose 5 ton lift crane. The primary reasons are that the heavy lift crane is expensive to rent and the large capacity will not be utilized efficiently.

Stormwater Management

The stormwater management system for the LMOB construction site will consists of:

- 1. Closing off the site with a silt fence
- 2. Placing sand bags at the base of the silt fence
- 3. Place sandbag filter around stormwater drains as in Figure 3.8
- 4. Apply gravel layer on top of soil that is bare
- 5. Guide temporary construction run-off to the swale at the south end of the parking garage


Supporting the physical methods described above, are non-structural methods. Non-structural methods involve people. Without people identifying potential erosion and sedimentation sources, and implementing structural methods; stormwater management will be worthless. Non-structural methods include personnel training and defining responsibilities, and construction routines that

aids in stormwater management. Examples of construction routines that aid stormwater management are site clean-up, maintenance, and site inspection. For the LMOB construction site the non-structural methods that is recommended is regular inspections of the system by the project manager and superintendent, two required times for inspecting the stormwater management system are before and immediately after each rainstorm, as well as the methods mentioned in the preceding sentences.

Temporary Bracing for Design II

Temporarily bracing the structural tilt-up walls is critical to construction success. Properly installed temporary bracing serves to stabilize the incomplete structure against lateral loads and reduce second order effects through reducing the un-braced lengths. In doing so, the possibility for structural failure and collapse is less likely because final restraint and reinforcement provided by other structural components are not in place. The weakest stage of the structural system is generally when it is incomplete. One of the many tragic cases involving improperly braced pre-cast and tilt-up panels occurred on the 6th of March 1989 in Tampa, Florida. In this tragic accident, a maintenance worker was crushed – by a concrete panel over 36,000 pounds – when the inadequately fastened base connection gave of the braces failed due to a wind gust (OSHA, 2014). The result was a case that took over a year to resolve and significant compensation on the part of the general contractor.

The importance of temporary bracing the structural tilt-up walls facilitates reasonable brace point selection and determining necessary bracing strength under 100% of the wind load (most significant lateral load). Selection of the temporary brace members are based on axial, bending, and slenderness. Detailing the connections and temporary foundations is beyond the scope defined within the proposal and with that rational was not designed.

Figure 3.17, Structural Tilt-Up Wall Force Interaction

Cost and material use reductions are a central theme in construction, to do that the bracing points were selected to minimize moment and shear which the structural tilt-up experiences during the tilting process. The largest loads that a structural tilt-up wall will experience are during construction specifically in the time when the wall is tilted into place until the structural floor is installed (TCA, 2013). Structural tilt-up walls experience a generally full range of combined bending and axial loads (Figure 3.17). As a result, the bending and axial interaction was studied to ensure that the structural tilt-up walls do not fail. In addition to the temporary bracing strength capacities and the structural tilt-up wall strength capacity, construction ease is another predominant factor. Construction ease is achieved through in limiting the number of temporarily braced levels to two. Any more would get in the way.

Table 3.3, Maximum Factored Loads on Structural Tilt-Up Walls				
Loading Condition	Maximum Loads			
Loading Condition	Moment (Kip-ft)	Shear (Kip)		
Two Level Brace Points	84.2	12.9		
Wind MWFRS (Constr.)	40.5	4.8		
Wind MWFRS	15.6	5.9		

Influence lines were used to determine the bracing points that minimized moment and shear experienced in the structural tilt-up walls. The potential bracing points are all located at the floor level. Before using influence lines analysis, the structural tilt-up wall was idealized as a beam with a unit width, 1'. In the idealized beam, only continuous column components of the structural tilt-up wall experiences bending. The beams connecting columns are considered part of the dead weight. It was determined that two bracing levels, the third and fifth floor levels, produced the minimum moment and shear in the structural tilt-up walls. Panel brace points minimizing flexure experienced by the tilt-up walls during the lifting process can be found in Figure 3.18 respectively. For more details, concerning the determination of the brace points which least affected the tilt-up wall, see the appendix. Though the moment and shear in the structural tilt-up walls are minimized, the loads are still much greater than those stemming from the controlling lateral load, wind, as can be seen in Table 3.3.

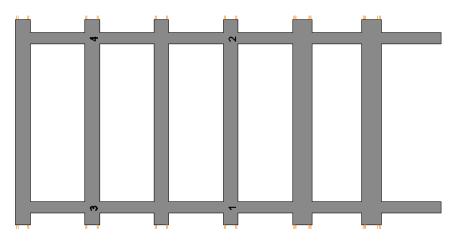


Figure 3.18, Brace Points on Tilt-Up Wall

Figures 3.19 to 3.22 illustrate the general tilting process for structural tilt-up walls. In order to reduce the number of connections to fasten and reduce worksite hazard, the temporary brace members are attached to the structural tilt-up walls before tilting. This first step is beneficial to worksite safety by reducing the time which the structural tilt-up walls are not fully stable, through reduced connections to fasten. The other major step is securing the structural tilt-up wall base, to prevent the wall from kicking-out. Bolted angles will restrain the structural tilt-up wall base. The structural tilt-up wall base will be grouted, once the structure is made plumb and straight. Grouting the structural tilt-up base will allow the bolted angle connection to develop and become more effective.

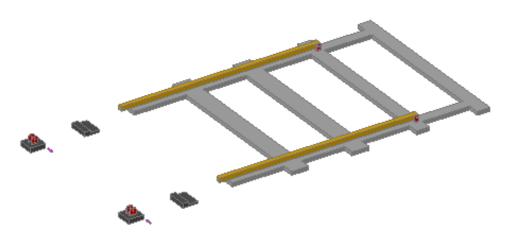


Figure 3.19, Step 1 of Lifting Tilt-Up

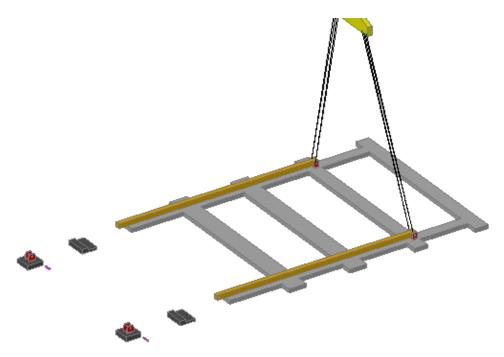


Figure 3.20, Step 2 of Lifting Tilt-Up

Figure 3.21, Step 3 of Lifting Tilt-Up

Figure 3.22, Step 4 of Lifting Tilt-Up

As a note, the temporary bracing members will only be removed once the structural tilt-up wall joints have cured, creating a continuous structural shell; and the structural steel columns and beams are in place

	Table 3.4, Loads on Temporary Bracing at Each Level					
Panel(s)	Total Panel Area (ft ²)	Brace Level	Elevation (ft)	Factored Axial Load (Kip)		
NN1/NN2	829.6	3	44	195.8		
1N1N1/1N1N2	829.0	5	72	24.8		
NN3	1349.0	3	44	318.4		
INING	1349.0	5	72	40.3		
NN4	1293.8	3	44	305.4		
11114	1295.8	5	72	38.7		
NN5	1216.9	3	44	287.2		
INING		5	72	36.4		
SN1/SN2/	1127.7	3	44	266.2		
SN3	1127.7	5	72	33.7		
SN4/SN5	1004.0	3	44	470.7		
51N4/51N3	1994.0	5	72	59.6		
EN1/EN2	714.6	3	44	168.7		
	714.6	5	72	21.4		
	1319.3	3	44	311.4		

EN3/EN4/ WN1/WN 2		5	72	39.4
WN2	667)	3	44	157.5
VV IN S	WN3 667.2	5	72	19.9
WN4 724.8	774 9	3	44	171.1
	/24.0	5	72	21.7

Table 3.5, Initial Design Parameters Based on Factored Axial Loads				
Factored Axial Load (Kip)Length (in)Ireq (in4)				
29.8	894	105.5		
97.9	547	129.5		
235.3	547	311.2		

The temporary bracing members were designed to resist axial and second order effects arising from the full factored wind and dead loads. Table 3.4 shows the factored axial loads that the temporary bracing members must resist. Most loads on the temporary bracing members were determined through STAAD Pro. Table 3.5 only shows three axial load magnitudes, the actual axial loads experienced by the temporary bracing members are much greater. The reason to limit is that it is not economical, both in terms of logistics and cost, to select the optimal temp brace member for each panel.

Table 3.6, Axial and Bending Interaction					
Bracing Member P_r (Kip) M_r (Kip-ft) P_r/P_c $P_r/P_c + 8/9(M_r/M_c)$					
HSS10x10x3/8	29.8	82.4	0.52	0.97	
HSS10x10x3/8	97.9	40.6	0.64	0.86	
HSS12x12x1/2	235.3	72.2	0.68	0.89	

Structural steel member dimensional tables in AISC 14th Edition Steel Construction Manual assisted the hand calculations to size and select reasonably adequate temporary bracing members. Axial and bending caused by second order effects, along with the recommended temporary bracing member sizes are shown in Table 3.6. In total there are four brace points, two at each level. More details pertaining to the temporary bracing member sizing and selection can be found in the appendix.

Table 3.7, Temporary Bracing Schedule						
Panel	Brace Point	Drage Deint Elevation (ft)	Bracing Member			
Fallel	Brace Point	Brace Point Elevation (ft)	Length (ft)	Size		
	1	44	46	HSS10x10x3/8		
NN1/NN2	2	44	46	HSS10x10x3/8		
11111/11112	3	72	75	HSS10x10x3/8		
	4	72	75	HSS10x10x3/8		
NN3	1	44	46	HSS12x12x1/2		
INING	2	44	46	HSS12x12x1/2		

	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS12x12x1/2
NINI 4	2	44	46	HSS12x12x1/2
NN4	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS12x12x1/2
NINI5	2	44	46	HSS12x12x1/2
NN5	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS12x12x1/2
CN11/CN12/CN12	2	44	46	HSS12x12x1/2
SN1/SN2/SN3	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS12x12x1/2
CN14/CN15	2	44	46	HSS12x12x1/2
SN4/SN5	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS10x10x3/8
	2	44	46	HSS10x10x3/8
EN1/EN2	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS12x12x1/2
EN3/EN4/	2	44	46	HSS12x12x1/2
WN1/WN2	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS10x10x3/8
MAN 12	2	44	46	HSS10x10x3/8
WN3	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8
	1	44	46	HSS10x10x3/8
XX/NT 4	2	44	46	HSS10x10x3/8
WN4	3	72	75	HSS10x10x3/8
	4	72	75	HSS10x10x3/8

From Table 3.7 it is evident that the temporary bracing members are large. These temporary bracing members are large because the structural tilt-up walls themselves are large. The larger the structural tilt-up wall the larger the wind load, since the wind load is directly proportionate to the face area of the structural tilt-up wall. Also attributed to the structural tilt-up wall's dimensions is the height, 86', which is only 6' shy of the tallest structural tilt-up wall, used in the Lucky Street Garage in Hollywood, FL (TCA, 2013). The height of structural tilt-up walls meant that the temporary bracing members would be long, making it vulnerable to buckling and second order effects. In short, Design II pushed tilt-up wall construction and design to the current limit.

Direct Construction Costs and Conclusion

Akin to most projects, cost is a major determinant in whether a project progresses or not. The purpose of estimating the original and re-design structural costs, and alternate building envelopes is to determine the most reasonably advantageous system.

Assumptions governing the cost estimates for both Design I and Design II are as follows:

- 1. Open shop labor
- 2. Waste factor will be 5% unless noted
- 3. All structural steel has a density of 490 lb/ft^3
- 4. All anchor bolts are 24" long
- 5. Flashing around wall openings are 12" wide
- 6. Sales tax is 6%
- 7. Overhead and profit is 10%

Exhaustive cost estimation was not implemented for every item used in LMOB. Instead only the façade, structural, soil compaction, and necessary construction infrastructure were estimated in detail. Three estimates, incorporating the mentioned estimating categories, were implemented; specifically the original building, Design I, and Design II. Estimating the components in the original building allowed for later substitution of Design I and Design II component costs. Underestimation is detrimental to construction projects due to the need to negotiate with the owner to pay the additional cost, creating a less satisfied customer; or the contractor absorbs the additional cost and cut their profit. In order to hedge against underestimation, a 10% contingency incorporated into the cost estimate.

Adjustments factors are necessary to compensate the effect of waste, the effects of location on material and labor, time, as well as overhead and profit. To do this each estimate broke down the mentioned costs into three categories: material, labor, and equipment cost. The purpose behind the action is that the waste factor only applied to material cost, arising from potential material breakage and material used inefficiently. The second reason is that overhead and profit factor, 10%, was only applied to material and labor costs. To compensate for the incompatibility due to the effect of inflation in time, the estimated costs were modified by an adjustment factor. As directed by *R.S. Means* the inflation adjustment factor between 2008 costs and 2013 costs is a ration ratio of the location factor in 2008 and 2013. More details, such as the exact itemized cost breakdown and the entire estimate, please see the appendix.

Estimates of the original building, Design I, and Design II reveal the cost of each component in each design and how they add up to make Design II not cost effective. As evident from Table 3.8, the estimates revealed that the original design is still the most cost effective. The primary reason that Design I is more expensive than the original are the construction of temporary roads and unloading areas, not present in the original. Constructing temporary roads and unloading areas

Table 3.8, Total and Select Itemized Cost of Each Design					
Design	Itemi	Total Cost			
Designation	Necessary Infrastructure	Total Cost			
Original	\$293,658	\$12,600,000			
Design I	\$307,176	\$3,776,745	\$858,413	\$12,668,143	
Design II	\$576,009	\$3,546,273	\$1,799,585	\$13,647,676	

reduce construction traffic impact on the surrounding roads. Unlike Design I, Design II is costly due to a multitude of items.

Infrastructure necessary to construct LMOB is the largest culprit increasing Design II's cost. For one, the use of a heavy lift crane and the assumption that the contractor decides to buy temporary bracing instead of renting it, increase Design II's infrastructure cost. Temporary bracing accounts for approximately a fourth of the total infrastructure costs. There is no doubt that if the temporary bracing was rented, there would be a significant cost reduction.

The second major item causing Design II to be cost inefficient is the façade system chosen for the structure. The CFS framing is more expensive than the reinforced and grouted CMU façade of the original design and Design I. Originally the alternate façade system, metal studs sheath in fiber cement board, was chosen due to lightness and the ground assembly possibility. The potential benefit in ground assembly lies in quick assembly and scheduling flexibility, which the façade assembly can be done almost any construction phase before the applying interior and exterior finishes. Major assumptions and flaws in thinking erased the benefit of scheduling flexibility. It was discovered – late in the project – that assembling the metal studs took much longer than anticipated, thus requiring the task to be scheduled as early as possible to meet the desired completion date. Adding additional crews is possible to speed up the construction of the metal studs, however the shear number of workers on the site would get into each other's way and interfere with surrounding businesses. As a result, the alternate façade system offered neither speed nor construction flexibility.

Thus far it can be concluded that the redesigns are not as financially competitive, nor easy to construct as the original LMOB design. Design II is the least competitive, due to the complexity of site logistics – which require numerous reconfigurations and takes up significant space. It is likely that a Design II can be made more competitive by breaking the full height monolithically cast tilt-up walls into two vertically stacked panels. In doing so, a large capacity crane would not be required, vertical steel reinforcement would be reduced, and the temporary bracing members would be smaller – in the end the financial burden would be reduced. Though the constructability phase of this report is at an end, more studies should be done. These include, but are not limited to: determining the connection between the tilt-up panels and whether two vertically stacked panels make Design II more competitive.

Building Façade Breadth

The building envelope is an essential system that is often overlooked. This oversight recently resulted in building envelope accounting for the majority of building failures (Snoonian, 2000). In essence, a building's envelope protects the occupants and interior building systems from undesirable exterior environmental conditions. A few of the exterior environmental conditioned tamed by the building envelope include: high moisture levels in the air, significant temperature fluctuations, noise, rain, and airborne projectiles. This phase of the breadth focuses on using light gauge cold formed steel (CFS) stud back-up in lieu of concrete masonry. Structurally, only the stud and track were selected from determined design loads; other components and details like the connections were not explored. The rationale behind the redesign is reducing the façade wall weight. Reducing the wall weight has many benefits chief among which is reducing the seismic load – proportional to the building weight – and construction productivity. Though reducing the façade wall weight is paramount, it is not the only factor determining the redesign's success. Moisture resistance, thermal performance, acoustical performance, as well as general construction cost and assembly ease criterion were used to compare the original façade wall with the redesign.

Literature Review and Benchmarks

Uncontrolled moisture – whether in the form of vapor flow or wind driven rain – is detrimental to building operations and the occupants. To tame moisture, it must be understood how it crosses between barriers.

When moisture is in the form of vapor, it can move through wall assemblies in two ways: vapor diffusion and air transport of vapor. Vapor transportation through diffusion works through a difference in vapor pressure and/or temperature difference between the two environments which a barrier separates (Lstiburek, 2001). Vapor pressure is the concentration of moisture in air. Water vapor diffusion through barriers is governed by the *Second Law of Thermodynamics*.

The Second Law of Thermodynamics states that:

- 1. Water vapor moves from a location of higher vapor pressure to one of lower vapor pressure
- 2. Water vapor moves from hot to cold interfaces

The amount of vapor diffusion directly depends on the barrier face area. Controlling the amount of vapor diffusion through the wall assembly can be achieved through the use of vapor retarders. According to the *2012 International Building Code (IBC)*, a vapor retarder is defined to have a permeability less than 1 *perm* under the dry cup testing method. The dry cup testing method measures a material's permeability by exposing one side of the material to 0% relative humidity (RH) and the other side to 50% RH (Lstiburek, 2000).

If diffusion through a barrier is primarily thermally driven then there is a potential for condensation to occur on the cold interface, especially when large thermal gradients exist. Condensation arises in the interface when the air temperature drops such that the air can no longer hold onto the moisture (Lstiburek, 2001). Typically condensation will form in the wall material exhibiting the largest insulation value. The material exhibiting the largest insulation value is also the location where the greatest temperature gradients exist in a wall. It is recommended that condensation occur in materials that resist moisture damage (Glantz, 2013). In addition, the condensation should be lead to the exterior or removed from the wall assembly by HVAC - to prevent health compromising diseases from taking root and thriving.

When compared to air transport of vapor, the vapor diffusion is relatively insignificant. This holds true unless the barrier is located in a hot/humid climate where the barrier is wetted by rain and experiences solar heat gain (Lstiburek, 2006). Air transport of vapor occurs when vapor moves from areas of higher air pressure to an area of lower air pressure. For vapor to be transported by air, the air must be moving. Air transport of vapor works independently from vapor diffusion. To tackle vapor movement arising from air transport, air movement must be stopped. Stopping air movement is can be achieved by using cladding and staggered joints. Staggering the joints of the wall's layers, prevents failure of one layer from letting air to freely move through the wall assembly unimpeded.

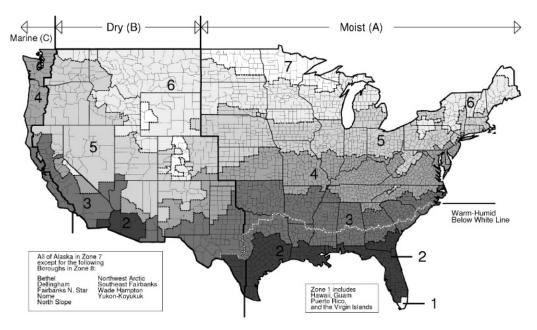


Figure 4.1, Continental U.S. Code Defined Climate Zones Source: 2009 IECC §301.1

Different locations have different climate conditions; the impact on building envelope design is significant. Figure 4.1 shows the various regions with similar and different climates in the continental U.S. The literature review for the façade wall redesign will not explore the aspects of

the various climate zones, what will be said is that the climate zone for Largo, FL is 2. Code defined climate zones dictate the thermal insulation performance, from tables in \$502.2 of the 2009 *IECC* – R-Value for metal framed wall is 13, but is only 5.7 for solid walls like concrete masonry. It should be noted that different design codes were used in designing the original façade wall and redesign. The result is different thermal performance requirements. The code used in designing the original façade wall didn't require any thermal resistance – R-value, zero. This is significant because it factors directly into the general cost comparison of the original façade wall and redesign.

Table 4.1, Metabolic Rate of Typical Human ActivitiesSource: 2008 ASHRAE Std. 55			
Activity	Metabolic Rate (Met)		
Seated Quietly	1.0		
Reading-Seated	1.0		
Filing-Standing	1.4		
Walking About	1.7		
Lifting Packages	2.1		

Table 4.2, Insulation Value of Typical Clothing Source: 2008 ASHRAE Std. 55			
Clothing Insulation Value (Clo)			
Walking Shorts-Short Sleeve Shirt	0.36		
Trousers-Short Sleeve Shirt	0.57		
Trousers-Long Sleeve Shirt	0.61		
Trousers-Long Sleeve Shirt w/ Coat	0.96		
Trousers-Long Sleeve Shirt, Long Sleeve Sweater	1.01		

Next, comfort level of a building's occupants is explored. Let it be clear that it is impossible make all occupants of a building comfortable. Instead occupant comfort is based on statistically satisfying 80% of the building's occupants. The method relies on the anticipated activity level and the clothing worn by the occupants. Located above are two tables, Table 4.1 and Table 4.2, listing the various activity levels and clothing levels. LMOB's occupants were classified into two categories, clinic personnel and patients.

Each occupant category entails specific activity levels and clothing levels. It was assumed that the clinic personnel are constantly walking about tending the patients and filing throughout the day while wearing trousers and long sleeve shirts. Patients on the other hand, are assumed to be either patiently waiting or reading and are more casual, wearing trousers and a short sleeve shirt. Before the determining the ideal interior temperatures, the interior humidity was established. The interior humidity for LMOB is set to be 50%, based on *ASHRAE Std. 170 Addendum D. ASHRAE Std. 170 Addendum D* recommends that the RH for a clinic or a hospital be less than 60% to eliminate mold

and bacterial growth. With the help of *ASHRAE Std. 55 §5.2.1.1* and Figure 4.2, the recommended interior temperature range where approximately 80% of the clinic personnel and patients are comfortable is 72°F for the winter and 76°F for the summer.

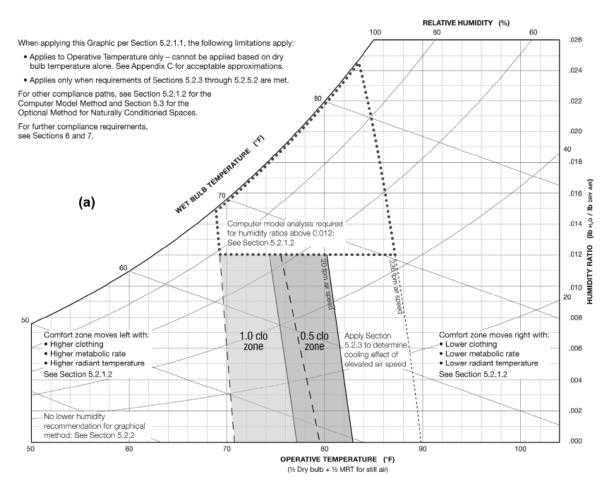


Figure 4.2, Graphical Representation of the Comfort Zone Source: 2010 ASHRAE Std. 55

	Table 4.3, General Descriptions of Various STC Ratings				
	Source: Harris, 1994				
STC	Description				
25	Normal speech can be understood quite easily and distinctly through wall				
30	Loud speech can be understood fairly well, normal speech heard but not understood				
35	Loud speech audible but not intelligible				
40	Onset of privacy				
42	Loud speech audible as a murmur				
45	Loud speech not audible				
50	Very loud sounds such as musical instruments or stereo can be faintly heard				

Airborne sound is another source of discomfort in an interior environment. The amount of airborne sound is limited by many building codes. These codes generally aim to limit intrusive exterior sound and maintain speech privacy. The *2009 IBC* defines that walls, partitions, and floor assemblies have a sound transmission class (STC) no less than 50, for airborne noise. STC is a single value that reflects an assembly's ability to dampen – transmission loss (TL) – the noise generated from various frequencies of human speech (Egan, 1988). Most human speech frequency ranges from 125 Hz to 4000 Hz (Egan, 1988). The greater the STC the greater the intimacy/privacy of the human speech. General privacy descriptions of STC ratings are shown in Table 4.3.

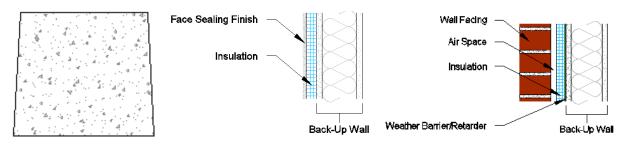


Figure 4.3, Mass Wall Figure 4.4, Sealed Wall Figure 4.5, Cavity Wall

So far, the wall functions and ideal performance parameters have been discussed, what has not been covered are the different types of wall assemblies. Each type of wall assembly has its own benefits and disadvantages. Later redesign of the façade walls will be based on one of the types of wall assemblies.

Generally speaking, there exists three types of walls. Figures 4.3 to 4.5, shows the three general wall types. Each general wall type has benefits and disadvantages. The most basic wall system are mass barrier walls, these walls are usually thick and load bearing. The mass barrier wall's thickness acts as a reservoir to store infiltrated water (Dalrymple, 2012). Over time the wall dries out due to evaporation. The simplicity of the mass barrier wall is the main advantage, whereby little can go wrong. Other than that the mass barrier is a very heavy system.

The second general wall system are sealed walls, which work by preventing water infiltration through the wall assembly through impermeable coatings. On the surface, the rational in repelling all water at the exterior surface appears work. However it is not practical, relying on a perfect seal to prevent water intrusion is un-realistic because of imperfect installation, existence of expansion and control joints, and material degradation will allow water infiltration (Dalrymple, 2012). Since there are no backup waterproofing, once moisture penetrates the assembly it soaks moisture sensitive wall assemblies – batt and cellulose insulation, wood structure and sheathing, gypsum wall boards – causing damage.

Inadequate drying and drainage is the culprit for most building envelope failures. Adequate drying and drainage occurs whenever the wetting rate is equal or less than the drying rate (Lstiburek,

2003). The concept behind cavity walls is the acknowledgement that the water will eventually find a way into the wall assembly. To compensate for this, cavity walls use drainage planes, weep holes, and permeable materials to drain any water that penetrates the assembly. The wall system's Achilles heel is the complexity of constructing cavity walls.

Façade Wall Redesign and Analysis

Redesigning LMOB's façade wall and comparing it's competitiveness with the existing concrete masonry façade requires multiple tasks. The first task is to select the materials for the façade wall redesign. Next, the redesign will be designed according to the building science benchmarks. Only after the building science design is completed will the moisture performance be analyzed. Additional analysis will only commence once the CFS stud and track are selected. The additional analysis include: acoustical performance, construction cost, and general ease of assembly.

Understanding that the original façade wall of LMOB was designed to the previous iteration of the building code, a retrofit to meet the more stringent current building code will also be designed. The retrofit will permit a more direct and fair comparison to determine if the façade wall redesign is worth it. For some background, the previous iteration of the building code required no thermal resistance for mass walls – like the concrete masonry back-up wall used for LMOB's façade –, the current however requires a minimum R-value of 5.7.

Material Selection

Determining the materials for use in the redesign is a critical task. The design phase depends on the properties of the materials selected. The materials selected for the redesign are: structural sheathing, vapor retarder, thermal insulation, and CFS grades.

Table 4.4, Fiber Reinforced Cement Board Sheathing by Various Manufacturers					
Board Thickness (in)	Max. Wind Speed (Mi/hr)	Max. Pressure (lb/ft ²)	Manufacturer	Product Name	
0.38	120	N/A	U.S. Arch. Products	VERSAROC	
0.38	N/A	46	AmeriForm	ARMOROC	
	150	N/A	U.S. Arch. Products	VERSAROC	
0.5	N/A	68	AmeriForm	ARMOROC	
	N/A	40	National Gypsum	PERMABASE	

It was decided early that fiber reinforced cement board will be used as the structural sheathing. Fiber reinforced cement boards have been used as structural sheathing for structural insulated panels (SIP) and floors of prefabricated buildings, as well as exterior siding (Deluxe Building Systems, 2014). As exemplified by the various uses, fiber reinforced cement boards are durable and can be used for exterior applications. However, fiber reinforced cement board sheathing

strength varies more widely than those of more commonly used plywood. Therefore, fiber reinforced cement board sheathing selection is generally based on strength properties compiled from various manufacturers. Table 4.4 shows the strength properties of fiber reinforced cement board sheathing from various manufacturers. Based on these strength properties, it can be concluded that the structural sheathing will be a minimum 1/2".

	Table 4.5, Properties of Potential Vapor Retarding Materials Source: DuPont									
Material TypeCommon ExampleMax. Water Pressure (lb/ft²)Adhesion/Fastening Strength (lb/ft²)Max.We 										
Flashspun High-Density Polyethylene Fibers	Tyvek	15.0	> 33	420%	0.017					
Asphalt- Impregnated Bldg. Paper		5.2	>40	N/A	0.083					
Spun Polypropylene Fibers	C2000	10.5	40 - 90	279%	0.055					

A vapor retarding material was selected to control the quantity of moisture passing through the wall assembly towards the interior. Table 4.5, shows the three potential vapor retarding materials considered. Selection for redesign was based on maximum anticipated water pressure and ability to show significant distress before failure. The design water pressure on the vapor retarding material was based on a maximum rain accumulation of 1" before drainage. It turned out that all potential vapor retarding materials could resist the design water pressure – 5.2 lb/ft^2 . Fluid applied flashspun high-density polyethylene fibers was selected for the redesign.

Table 4.6, Minimum Thickness of Various Thermal Insulation Materials								
	(Based on 2009 IECC Table 502.2(1))							
Required R-Value (hr-ft²-°F/BTU)EPS					PS			
Mass Wall	ll Metal Frame Mass Wall Metal Frame		Mass Wall	Metal Frame				
5.7 13 0.78 1.79 0.69 1.57								

In order to reduce condensation in the interior side of the wall assembly, it was decided to place a layer of thermal insulation on the exterior side of the wall assembly – right behind the stucco layer. By doing so, the various potential thermal insulation material is narrowed down. Mainly those which can resist moisture induced damage and prevent health hazards from thriving. Based on commercial availability, there were two viable choices – expanded polystyrene foam (EPS) and extruded polystyrene foam. As can be seen above, in Table 4.6, the minimum thickness for EPS is greater than XPS. The minimum thickness to achieve the required thermal resistance was based

on the potential insulation accounting for no more than 60% of total wall assembly thermal resistance. Though XPS permits thinner wall assemblies, it was not selected for the façade wall redesign. The main reason is the higher cost of XPS thermal insulation and typical location of use. XPS thermal insulation is typically used for below grade and on the roof, walls however are the domain of EPS.

Figure 4.6, Wall Lath for Stucco Source: This Old House, 2012

The stucco and lath selection is based on moisture performance. Two stucco materials were considered: Portland cement based and synthetic polymer based. Portland cement based stucco absorbs more moisture than the synthetic polymer based stucco. The benefit is that it is permeable, which results in whenever water that gets behind the stucco can easily get removed through evaporation. On the other hand synthetic polymer base stucco is an impermeable material (Lstiburek, 2006). Like any impermeable finish, any water that penetrates the coating or water on the rigid insulation surface that is not removed will get trapped. Another downside to using Portland cement based stucco is susceptibility to cracking (Lstiburek, 2006). However, the wall lath – an integral component of stucco finishes – can be used to reinforce the cement and limit crack formation as rebar in concrete. The desire dry penetrating moisture easily from the wall assembly meant that the Portland cement based instead of synthetic polymer base.

As for the wall lath materials, there are two main types. One is galvanized steel and the other is fiberglass. Galvanized steel lath is more commonly used, but it was decided that a PVC lath will be used – since LMOB is in a salty and moist environment. The abundance of salts and moisture will eventually corrode the galvanized steel lath. General PVC degradation arising from UV exposure is not a concern, as it will be protected by the stucco.

Table 4.7, CFS Mechanical Properties									
	Source: Clark Dietric	h, 2014; ASTM, 2009							
F_y (kip/in ²)	F_y (kip/in ²) F_u (kip/in ²) E (kip/in ²) v								
33	33 45 20500 0.224								
50	65	29500	0.334						

Specific CFS material were not selected due to the multitude of choices – that varied with manufacturer. Instead common strength properties were gathered. Table 4.8 shows the strength properties. It is intended that the higher strength CFS will be used if it results in shallower and lighter members.

Expansion joint are essential because almost all materials expand and contract, either due to temperature or moisture changes. The duty of expansion joints is to prevent material failure such as undesirable cracks, and unnecessary water intrusion. All expansion joints were designed based on anticipated material expansion and contraction, along with sealant movement capacity. For thermal expansion and contraction determination, the maximum anticipated temperature change was used to prevent bucking the finish material. In Largo, Florida the maximum anticipated temperature change occurs during January.

	Table 4.8, Properties of Various Sealant Types
	Source: Cook, 1991
Sealant Type	Sealant Properties
	- Good adhesion, water resistance, and color stability
Butyl	- Minimal surface preparation
Dutyi	- Cures slowly
	- High shrinkage and low shape recovery
	- Good adhesion and water resistance
	- Compatible with bitumen and asphalt surfaces
	- Relatively inexpensive
Neoprene	- Cures slowly
	- Typically available in dark colors only
	- Stains surrounding materials
	- High shrinkage
	- Good adhesion, UV resistance, and chemical resistance
	- Minimal surface preparation
Solvent-	- Does not stain surrounding material
Based	- Cures slowly
Acrylics	- Only for joints $\leq 3/4$ " wide
	- Low shape recovery
	- Poor water resistance
	- Good tear resistance, UV resistance, chemical resistance, and shape recovery
	- 20 to 30 year mean life
Urethanes	- Joints can be sized ≤ 6 " wide
	- Surface preparation is required
	- Poor water immersion resistance
	- Good heat resistance, UV resistance, and shape recovery
~ ~ ~ ~	- 25% to 50% movement capacity
Silicones	- 20 to 30 year mean life
	- Does not stain surrounding material
	- Surface preparation is required

Dictating the expansion joint design are guidelines and assumptions, which specifically includes:

- 1. Vertical joints are spaced no more than 22' apart
- 2. Horizontal joints are positioned at each floor level
- 3. Expansion joints are hidden in the line details, shown in Figures 4.7 to 4.10 to limit aesthetic impact
- 4. Stucco properties are based on extreme expansion and contraction of concrete
- 5. All joint spaces are based on the largest cumulative panel length
- 6. Insulation expansion and contraction arising from moisture and thermal effects are small and negligible

Various sealants are available on the market as a result selecting them can be difficult. Sealant selection for the expansion joint was based on movement capacity, resistance to UV radiation, and durability. Table 4.8 lists the properties of various sealant types. From the selection criteria, silicon based sealants was chosen.

Table 4.9, Material Expansion PropertiesSource: The Brick Industry Association, 2006							
Material	Coeffic	cients					
Wraterial	Moisture Expansion	Temperature Expansion					
Concrete	0.00045	0.0000055					
Masonry	0.00045	0.0000045					
Stucco 0.00070 0.0000055							

Table 4.10, Recommended Expansion Joint Sizes								
Joint	Panel Length in the Expansion Direction (ft.) Movement Joint Size (in)							
Designation	Panel 1	Panel 1 Panel 2						
Vertical	20.5	19.8	0.196	7/8				
Horizontal	16.0	14.0	0.146	5/8				

Figure 4.7, Designed Expansion Joints (Magenta) for North Façade

Figure 4.8, Designed Expansion Joints (Magenta) for South Facade

Figure 4.9, Designed Expansion Joints (Magenta) for East Facade

Figure 4.10, Designed Expansion Joints (Magenta) for West Facade

Using the material properties in Table 4.9 and conservatively allowing 25% joint movement in the silicon based sealant, was the recommended joint size was derived. Recommended joint sizes can be found on Table 4.10. Actual joint locations on the façade re-design are highlighted in magenta in Figures 4.7 to 4.10.

Building Science

Replacing the concrete masonry back-up wall with light gauge CFS wall system impacts the multiple performance aspects. Light gauge CFS is lighter and more thermally conductive than solid concrete masonry. The result is that the redesign cannot rely on shear mass and bulk to resist heat flow, moisture flow, and attenuate sound. This section will focus on addressing the thermal and moisture performance changes arising from the redesign, as well as retrofitting the original façade wall system to meet current code – for a more direct comparison.

The redesign is based on the cavity wall system – discussed in the literature review – and is illustrated in Figure 4.11. For convenience, the retrofit and original façade walls are illustrated in Figures 4.12 and 4.13. One reason for basing the redesign off of the cavity wall system is that perfect seals against moisture intrusion is not possible. The causes are – more often than not – improper installation, material degradation arising from lack of maintenance, as well as unreasonable high cost to ensure perfect seals. Cavity wall systems on the other hand acknowledge that water will eventually penetrate the wall assembly. Thereby compensating it by incorporating weep holes for drying out the wall and multiple layers – to retard water penetration. The second point is the lightweight of the entire system, when compared to mass walls.

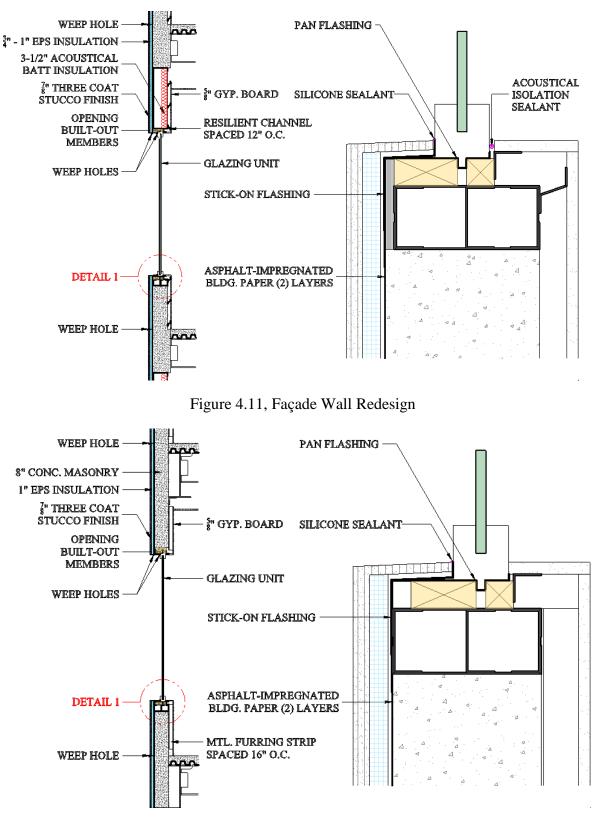


Figure 4.12, Façade Wall Retrofit

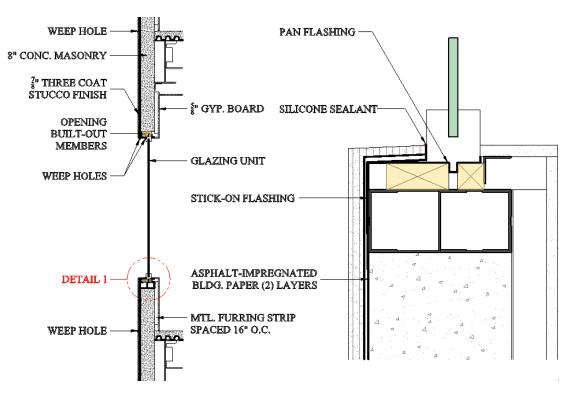
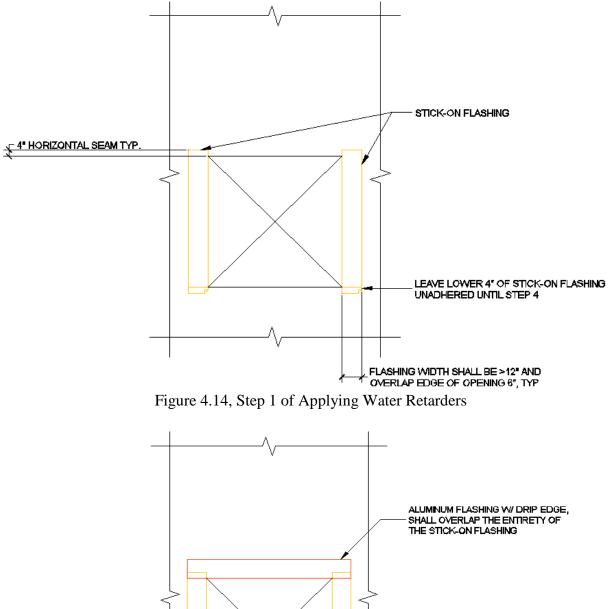



Figure 4.13, Original Façade Wall

Reasoning behind organizing the various layers in the redesign and retrofit wall assemblies will be discussed below. Starting from the exterior wall assembly layers then moving inwards, behind the stucco finish is EPS rigid insulation. Exterior rigid insulation was used in-lieu of thermal batt insulation – placed between the CFS members –, in order to reduce the amount of condensation in the interior side of the wall assembly. Condensation generally occurs at the interface where there is significant temperature and vapor pressure changes. Moving the majority of the thermal resistance and vapor flow resistance to the exterior, shifts the location of condensation to exterior. A condensation plane and vapor retarder is incorporated into the redesign. They are placed behind the EPS rigid insulation to facilitate drainage towards the exterior, thus permitting the wall assembly to dry.

The construction sequence used in applying flashing around windows and vapor retarders is important. An improper construction sequence will create laps that allow water to enter from the top edge of the flashings and vapor retarder. The only way to fix improper installation is to remove the originally installed water management system and install the new water management system properly. Proper flashing and vapor retarder installation ensure that each vapor retarder and flashing layer reinforces or backs-up other layers, also known as a shingle lap manner. As recommended by the *Canada Mortgage and Housing Corporation (CMHC)*, a government housing agency, each lap is at least 4". These are the reasons why this report defines the installation in words

and having the contractor comprehend it, the flashing and waterproofing installation process is illustrated in Figures 4.14 to Figure 4.17.

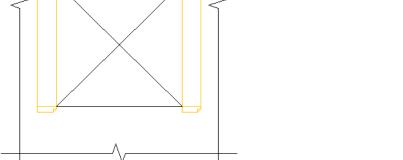


Figure 4.15, Step 2 of Applying Water Retarders

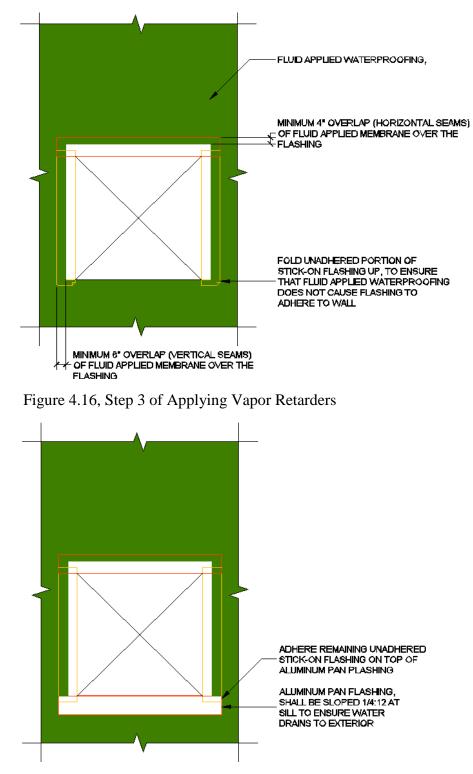


Figure 4.17, Step 4 of Applying Vapor Retarders

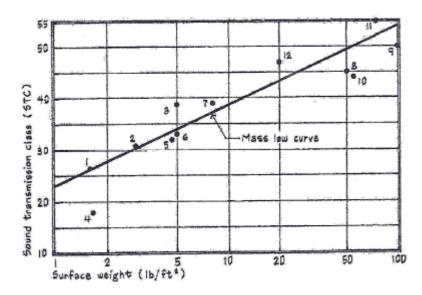


Figure 4.18, Correlation between Mass and Sound Attenuation Source: terMeulen, 2011

Unlike the original façade wall system and the retrofit, the redesign incorporates sound attenuation material and profiles. As mentioned earlier, the reason is the lack of mass. The effects of mass on sound attenuation is known as the Mass Law. Figure 4.18, shows the direct correlation between material mass and sound attenuation – exemplified by surface weight and sound transmission class (STC), respectively. To achieve similar performance as the original façade wall system and satisfy code requirements; acoustical insulation is placed in the cavities between the CFS studs, along with resilient channels. Acoustical insulation between the CFS studs serve to dampen sound, while the resilient channels acoustically decouples the wall assembly (terMeulen, 2011). The resilient channels decouples the wall assembly, by isolating the gypsum wallboard panels from the CFS studs.

Additional parameters and assumptions defining the redesign and retrofit are listed below:

- 1. Weep holes permit negligible thermal exchange between the cavity and exterior
- 2. Weep holes are 3/8" diameter
- 3. Generally impermeable elements are damaged
- 4. When multiple materials exist at an interface, the average is used
- 5. Stucco is 7/8" thk. based on Portland Cement Association (PCA) recommendations
- 6. Fluid applied vapor retarder is 25 to 50 mils thk.
- 7. Steel stud flanges act as thermal bridges and are no more then 1-1/2" wide
- 8. Thermal resistance of the air film is neglected
- 9. Acoustical insulation has thermal resistance that is generally equivalent to fiberglass batt thermal insulation
- 10. Materials thicknesses were based on commercial availability and design recommendations

Once the original façade wall system was retrofitted and redesigned, they were compared – to determine if the redesign is reasonably feasible. Here only the thermal and moisture performance was analyzed for the comparison. Where, thermal performance is gauged to the intrinsic wall assembly R-value. Determining moisture performance based on occurrence of condensation. Condensation occurs when the relative humidity (RH) is greater than 100%. Additional comparison like acoustical performance and cost will be discussed later. See the appendix for details of the analysis and calculation method. Tables 4.11 to 4.15 details the intrinsic thermal resistance and moisture performance of the redesign, retrofit, and original façade wall systems.

Table 4	Table 4.11, Thermal and Moisture Resistance of Redesign at Different Sections								
Designation	Description	Total R-Value (h-ft ² -°F/Btu)	Total R _v -value						
1	Through structural studs	4.2	25.7						
2	Through air space between structural studs	15.4	23.1						

	Table 4.12, Average Relative Humidity Across Retrofit Wall Assembly												
Lavan			Normal Conditions (%)				10	0% Exte	erior RH ((%)			
Layer Interface	R_i/R	R_{vi}/R_v	Wi	nter	Sum	mer	Wi	nter	Sum	imer			
Interface			High	Low	High	Low	High	Low	High	Low			
1			59.0	86.0	75.0	90.0	100.0	100.0	100.0	100.0			
2	0.235	0.892	53.9	95.9	36.7	55.7	58.2	97.1	39.8	56.7			
3	0.042	0.000	53.7	92.2	37.7	55.6	58.0	93.3	40.9	56.6			
4	0.000	0.018	53.6	92.7	36.6	54.9	57.2	93.7	39.3	55.8			
5	0.011	0.078	53.2	94.0	32.4	52.0	53.7	94.1	32.8	52.1			
6	0.709	0.000	50.1	49.9	51.0	50.5	50.5	50.0	51.6	50.6			
7	0.003	0.012	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0			

Table 4.13, Th	Table 4.13, Thermal and Moisture Resistance of Retrofit and Original							
Wall System	Wall SystemTotal R-Value (h-ft ² -°F/Btu)Total R_v -Value							
Original	Original 1.2 88.9							
Retrofit	6.2	114.2						

	Table 4.14, Average Relative Humidity Across Original Wall Assembly											
т			Noi	rmal Coi	nditions	(%)	10	0% Exte	0% Exterior RH (%)			
Layer Interface	R_i/R	R_{vi}/R_v	Win	nter	Sum	mer	Wi	nter	Sum	Summer High Low		
Interface			High	Low	High	Low	High	Low	High	Low		
1			59.0	86.0	75.0	90.0	100.0	100.0	100.0	100.0		
2	0.082	0.043	58.4	81.0	76.6	88.1	97.3	93.3	101.7	97.6		
3	0.000	0.000	58.4	81.0	76.6	88.1	97.3	93.3	101.7	97.6		
4	0.000	0.000	58.4	81.0	76.6	88.0	97.3	93.4	101.7	97.6		

5	0.442	0.953	52.1	75.9	36.9	51.1	52.2	75.9	37.1	51.2
6	0.002	0.000	52.1	75.7	37.0	51.1	52.2	75.8	37.1	51.2
7	0.474	0.004	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

	Table 4.15, Average Relative Humidity Across Retrofit Wall Assembly												
Larvan			Normal Conditions (%)				10	00% Exterior RH (%)					
Layer Interface	R_i/R	R_{vi}/R_v	Wir	nter	Sum	mer	Wi	nter	Summer				
meriace			High	Low	High	Low	High	Low	High	Low			
1			59.0	86.0	75.0	90.0	100.0	100.0	100.0	100.0			
2	0.016	0.034	58.8	86.0	74.1	88.7	98.3	99.3	98.5	98.3			
3	0.710	0.222	54.4	48.9	98.3	77.9	83.0	54.2	127.6	85.1			
4	0.098	0.000	53.9	44.9	104.8	77.6	82.3	49.7	135.9	84.8			
5	0.000	0.000	53.9	44.9	104.8	77.6	82.3	49.7	135.9	84.8			
6	0.085	0.741	50.4	54.0	47.3	50.3	50.5	54.1	47.4	50.3			
7	0.000	0.000	50.4	54.0	47.3	50.3	50.5	54.0	47.4	50.3			
8	0.091	0.003	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0			

From the tables above, it can be determined that no condensation on the façade wall redesign, even when it is raining and the exterior becomes wet. Retrofit and original façade wall systems however, experienced some condensation. The condensation quantity is insignificant, meaning that it can drain from the wall assemblies adequately.

Table 4.16, Required Weep Hole Capacity							
Wall	Layer	Max Wall Area Served		Volumetric Flow Rate ($ \Delta P/(\Sigma Rv, n \times \rho) $)			
System	Interface	m^2	ft ²	$m^3/24hr$	in ³ /hr		
Original	2	64	689	0.000432	1.097		
Dataofit	3	64	689	0.000372	0.946		
Retrofit	4	64	689	0.063706	162.007		

Table 4.17, Estimated Exit Flow Rate for 3/8" Weep Hole							
Head I	Height	Max Wall A	Area Served	Exit Flow Rate	Drainage		
in	mm	m^2	ft ²	m/s	ft/s	Time (s)	
0.1875	4.7625	64	689	1.2	4.0	0.02	

Tables 4.16 and 4.17 show the required and estimated drainage capacity of the 3/8" weep holes. While determining the actual drainage capacity, it was assumed that 50% of the weep hole is effective. The assumption was made to simulate imperfect construction, as well as build-up of minerals and dust. Using the Conservation of Energy, it was determined that moisture in the wall assemblies drains to the exterior quickly. The actual drainage rate will likely be greater from the estimate because the head height used in the estimate is conservative.

CFS Stud and Track

Replacing the concrete masonry with light gauge CFS members require structural redesign. Light gauge CFS members were designed according to AISI 100. In terms of the design load, the redesign wall system is not a part of the main wind force resisting system (MWFRS) – therefore it experiences out-of-plane wind loads and effects of self-weight. Seismic loads are not part of the design load because it is less than the more dominant wind loads. The entire façade wall redesign is based on the worst case scenario: the corner zones and a deflection of no more than L/360.

In order to simplify design and analysis of the CFS stud and track members, assumptions were made; and are as follows:

- 1. CFS façade walls act as simply supported beams when exposed to out-of-plane lateral loads
- 2. CFS façade walls carry no in-plane lateral loads
- 3. Structural sheathing and gypsum wallboards brace the CFS studs in the weak axis
- 4. Windows have equivalent weight to the wall sections which they replace
- 5. CFS stud spacing is 16" O.C.
- 6. All holes made in the compression members adhere to AISI 100 §B2.2
- 7. CFS track is connected to the stud in such a way that the track fails only by shear

Table 4.18, Unfactored Loads Acting on Exterior Walls								
Electr Lavel	Gravity Load (lb/ft)				Out-of-Plane Lateral Load (lb/ft ²)			
Floor Level	Dead	Live	Snow	12" O.C.	16" O.C.	24" O.C.		
All	159.7	0.0	0.0		42.0			

Table 4.19, Controlling Load Combination Check							
1.4D $1.2D + 1.6W + 0.5(L_r \parallel S \parallel R)$							
Vertica	l (lb/ft)	Lateral	Vertical (lb/ft)		Lateral (lb/ft)		
Gravity	Lateral	(lb)	Gravity	Lateral	12" O.C.	16" O.C.	24" O.C.
223.6	0.0	0.0	191.7	0.0	67.2	89.6	33.6

Table 4.20, Recommended Stud Members							
Member	Member Size			Location of Applicability			
Designation	b (in)	h (in)	Thk (in)	Location of Applicability			
800S137-43	1.375	8	0.0451	Typical wall studs spaced 16" O.C.			
(2)1200S162-54	1.625	12	0.0566	King Stud for opening(s) < 16' wide			
(3)1200S162-54	1.625	12	0.0566	King Stud for opening(s) < 26' wide			

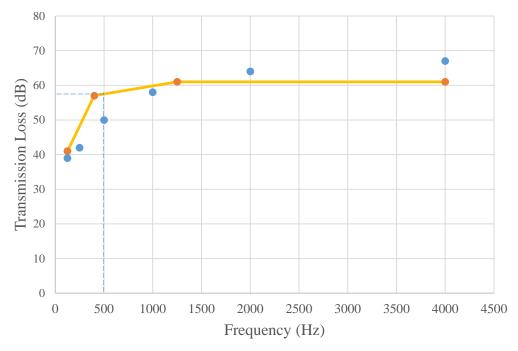
Table 4.21, Recommended Track Members						
Member	Member Size			Appliashility		
Designation	b (in) h (in) Thk (in		Thk (in)	Applicability		

800T150-33	1.5	8	0.0346	Use w/ 8" deep studs
1200T150-54	1.5	12	0.0566	Use w/ 12" deep studs

LRFD method was used to derive the design loads for the CFS members. Above Tables 4.18 and 4.19 shows the unfactored design loads and controlling load combinations. Three studs were selected, based on required strengths and maximum deflection. Under most conditions, the maximum deflection controls and local failure of the member's elements – like flanges and webs – control over the overall global strength properties. Tables 4.20 and 4.21 details the CFS stud and track members selected for the redesign façade wall system. Studs next to openings experience the greatest design loads, therefore built-up members with multiple studs connected together were used.

Table 4.22, Potential Dimensional and Strength Limits for Dimensional Lumber								
CEC Marshar	M _{u,wood} (lb-ft)				S_{req} (in ³)		I_{req} (in ⁴)	
CFS Member Designation	1.4	4D	Ot	her	Other		Other	
Designation	AW2	AW3	AW2	AW3	AW2	AW3	AW2	AW3
600S137-54			7071.2	11271.2	6.2	9.9	498.5	747.7
600S162-43	0.0	0.0	7498.6	11698.6	6.6	10.3	498.5	747.7
800S137-43			7013.2	11213.2	6.7	10.7	540.0	810.0

Using a single CFS stud, next to the openings was not possible, because the required depth and thickness is not readily available. The relative bulkiness of the built-up members cannot be reduced with the addition of dimensional lumber. As dimensional lumber lacked strength and elastic modulus necessary for a less bulky assembly. Table 4.22, shows the unreasonable required section modulus and moment of inertia if dimensional lumber is used along with one CFS stud.


Performance Analysis and Comparison

Earlier the thermal and moisture performance of the redesign, retrofit, and original façade wall systems were analyzed. Based on the two mentioned criterions, the redesign performed the best – greater general intrinsic thermal resistance and no condensation occurrence. However, it is not enough to flat out select the redesign; because the code required thermal resistance for metal framed wall is greater than those of mass walls, and the amount of condensation in the retrofit and original façade wall systems is so small that it is insignificant. It will depend on other criterions to determine if the redesign is reasonably feasible. These criterions include: acoustical attenuation, construction cost, and ease of assembly. Ease of assembly is based on number of crews necessary to put the façade wall systems together in similar timeframe, as well as the assembly's weight.

Table 4.23, General Acoustical Properties of the Original Wall System					
Source: Architectural Acoustics by M. David Egan; pp 53, 205, 211					
Material Transmission Loss (dB)					

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Rigid Insulation						
Concrete						
Air Space w/	39	42	50	58	64	67
Z-Shape Furring						
Gypsum Board						

Figure 4.19, STC of Original Wall System.

Sound attenuation is an important aspect of wall assemblies. It is a requirement in the 2009 IBC, serving to maintain speech privacy. To determine the STC rating for, the transmission loss (TL) through the wall components must be determined. TL for frequencies between 125 Hz and 4000 Hz, is then plotted (Egan, 1988). The STC contour is then superimposed onto the mentioned graph, as shown in Figures 4.19. The difference between the STC contour and the plotted TL must not be greater 8 – for each frequency –, nor should the summation of the difference be greater than 32 (Egan, 1988). It is at this point that the STC rating can be determined, the STC rating is the TL on the STC contour at 500 Hz.

Table 4.24, Estimated STC of Wall				
Wall Type	STC			
Façade Wall Redesign	54			
Original and Retrofit Wall Design	57			

For the acoustical analysis only the retrofit and original façade wall system could be determined in the described method. The redesign façade wall's STC rating, on the other hand, was determined by implementing a search for a similar wall system. A different method was used for the redesign because of the lack of acoustical data for the fiber reinforced cement board and acoustical insulation batt. The similar wall system incorporated gypsum wallboard sheathing in-lieu of fiber cement board (Owens Corning, 2004). Understanding that the fiber reinforced cement board has greater mass than the gypsum wallboard, it is expected that the redesign have a slightly better STC rating. Table 4.24 shows the STC rating of the three wall systems. What could be said immediately is that the redesign, retrofit, and original façade wall systems satisfy the 50 STC rating. In addition, the retrofit and original façade wall systems attenuate sound better than the redesign. The better acoustical attenuation arises from greater mass of the retrofit and original façade wall system, when compared to the redesign.

Table 4.25, Total Cost of Wall Systems (USD)						
Redesign	Retrofit	Original				
1,799,585	858,413	869,748				

Table 4.26, Number of Laborers to Complete the Façade Wall Systems in 160 Days		
Redesign	Retrofit	Original
111	83	80

Next, the cost associated with constructing the wall systems and their respective ease of assembly was analyzed. The unit cost for each façade material was acquired from *R.S. Means 2013*. The appendix shows greater detail involved in deriving the estimated total cost of the wall systems, which includes: quantity take-off, cost calculations, and respective assumptions From Table 4.25, the façade wall redesign is significantly more expensive to construct – over two times. High construction cost of the redesign primarily stems from the material and labor associated with the fiber reinforced cement board and CFS members.

Moving on, the façade wall systems' ease of assembly will be discussed. Determining which façade wall system is easier to construct can be done in various ways. The most comprehensive method includes implementing a study with a group of laborers. In this method the laborers would be required to build the façade wall systems, after that they will complete a survey. From the survey responses the systems' ease of assembly would be determined. The described method is exhaustive and requires approval – arising from the use of human subjects. Therefore, a numerical method was used. Ease of constructability was based on the number laborers needed to complete constructing the system in 160 days, and the systems' unit weight. It was assumed that only one task can be implemented at a time, only once completed can the next task be implemented. Daily output of the laborer(s) was taken from *R.S. Means 2013*. The number of laborers required to complete the façade wall redesign in 160 days is the greatest. The result is that it is more difficult

to construct – low level of productivity. Laborers required for the other two systems can be found in Table 4.26.

What can be concluded is that the redesign is not a reasonable solution with the defined parameters. In most numerically significant evaluation criterions – acoustical performance, cost, and constructability – the redesign has not achieved superior performance to the retrofit and original façade wall system. On the surface, the only bright spot is the redesign's weight. When factoring in the knowledge that LMOB will be the building template for the owners – to expand to other regions in the continental U.S. – the weight advantage of the redesign becomes insignificant. The reason is that other regions do not have as great a wind load as those in Florida. As a result, the concrete masonry's cells would not need to be completely grouted and reinforced, thereby reducing the unit weight. The lesson learned here is lightweight assemblies do not necessarily translate to better constructability.

The façade redesign study in this report has reached the end of its defined scope, but it is in no way complete. Additional studies should be done to analyze the implementation of prefabrication to reduce cost of CFS stud walls and in-the-field constructability. Also other wall systems should be studied – like use of SIPs with fiber reinforced cement boards, lightweight concrete masonry – to determine if the original façade wall remains a reasonable choice.

Conclusion

The original LMOB suffered from torsional and soft story irregularity; to solve it two redesigns were completed. Each redesign has advantages and disadvantages, each measured against the original – the benchmark. One thing that the redesigns share is improved building rigidity as exemplified by the smaller fundamental building period (original = 0.72 seconds, Design I = 0.62 seconds, Design II = 0.65 seconds). This report not only delved into the structural redesign; but also their impacts on construction logistics and cost. An additional system was studied, but to a lesser extent, is replacing the masonry back-up wall with one made of CFS studs.

Both structural redesigns were designed according to defined loads in ASCE 7-05, structural concrete design criteria ACI 318-11 and TCA's 2006 Tilt-Up Construction and Design Manual. LMOB was classified as an important structure equivalent to a hospital, due to the potential of the facility becoming converted to a hospital like facility. Already the hospital has rented a few floor levels in LMOB. Despite the weight increases in both redesigns, seismic loads don't control over wind loads. In terms of serviceability, the maximum allowable drift limit H_{story}/400 was respected.

Construction scheduling and cost were based on R.S. Means' daily crew output and unit cost. Design II's structural complexity – having to do with the lifting process and assuming that the contractor buys temporary bracing members – meant that its structure is slightly more expensive than those corresponding to Design I and the original. The need of a large site area required to cast the tilt-up walls and temporarily closing public roads made Design II less competitive with Design I and the original design. Design I is the most reasonable alternative to the original design, while costing no more than 100,000 U.S. Dollars (USD) greater than the original. As long as LMOB's owners limit their operations in a low seismic region – like Florida – the original design is the most cost effective and reasonable solution. This changes entirely if the owner decide to expand operations to more seismically active regions, where by Design I is recommended, even though Design II's roof drift is much less.

Wrapping up the thesis project was the façade improvement. Moisture and thermal performance was slightly better than the original system. However the attempt to replace the reinforced masonry back-up wall with a metal stud back-up wall caused major façade cost increases and prolonged the construction duration.

Each redesign was achieved through the combined use of hand calculations and computer software. Computer software was used to ease hand calculations and expedite the redesign process; and are as follows: Microsoft Excel, ETABS, spBeam, and RAM Elements.

Works Cited

American Concrete Institute (ACI). "Durability - Carbonation." *American Concrete Institute (ACI)*. American Concrete Institute (ACI), June 2006.

 $<\!\!http://www.concrete.org/Tools/FrequentlyAskedQuestions.aspx>.$

- - -. "Guide to Durable Concrete." *American Concrete Institute (ACI)*. American Concrete Institute (ACI), June 2008.

<http://www.maestriaenconstrucciones.com.ec/archivos/guide-to-durable-concrete.pdf>.

ASHRAE. Standard 170 Addendum D. 2008 ed. Atlanta: ASHRAE Standards Committee, 2010.

Belson Outdoors. "Concrete Safety Bollard." Belson Outdoors. Belson Outdoors, 2014.

<http://www.belson.com/Concrete-Safety-Bollards>.

The Brick Industry Association. "Volume Changes - Analysis and Effects of Movement." *GoBrick*. The Brick Industry Association, Oct. 2006.

<http://www.gobrick.com/portals/25/docs/technical%20notes/tn18.pdf>.

Building in Alaska. "Permeability of Common Building Material to Water Vapor." University of Alaska Fairbanks. University of Alaska Fairbanks, June 2011.

<http://www.uaf.edu/files/ces/publications-db/catalog/eeh/EEM-00259.pdf>.

Bureau of Labor Statistics. "Top 5 U.S. States Employing Concrete/Cement Contractors." *Bureau of Labor Statistics*. U.S. Department of Labor, May 2013. http://www.bls.gov/oes/current/oes472051.htm.

---. "Top 5 U.S. States Employing Structural Steel Contractors." Bureau of Labor Statistics. U.S.

Department of Labor, May 2013.

<http://www.bls.gov/oes/current/oes472221.htm>.

Canada Mortgage and Housing Corporation, trans. "Building Technology - Flashings." *Canada Mortgage and Housing Corporation*. Canada Mortgage and Housing Corporation, 1998. http://www.civil.uwaterloo.ca/beg/ArchTech/CMHC_flashing_BPG%20Compact.pdf>. Clark Dietrich. "Structural Studs." Clark Dietrich. Clark Dietrich, Nov. 2011.

<http://www.clarkdietrich.com/products/shared/398/structural-studs>.

Cook, John, and Julian Panek. Construction Sealants and Adhesives. Wiley, 1991.

Dalrymple, Ryan K. "Waterproofing 101." Willard Building, University Park. Oct. 2012.

DuPont. "Fluid Applied WB System." DuPont. DuPont, 2014. Jan. 2014.

<http://www.dupont.com/products-and-services/construction-materials/building-envelopesystems/brands/air-barrier-systems/products/tyvek-fluid-applied-wb.html>.

Egan, David M. Architectural Acoustics. New York: McGraw-Hill, 1988.

- Harris, Cyril M. Noise Control in Buildings: A Practical Guide for Architects and Engineers. New York: McGraw-Hill, 1994.
- Koiny, Jan, Jeffrey E. Christian, and Andre O. Desjarlais. "The Performance Check Between Whole Building Thermal Performance Criteria and Exterior Wall Measured Clear Wall R-value, Thermal Bridging, Thermal Mass, and Airtightness." *SciTech Connect*. U.S. Department of Energy, 1998. May 2013.

http://www.osti.gov/bridge/servlets/purl/672157-jv1Yj4/webviewable/672157.pdf>.

Lepage, Andres. "Panel Zones." Engineering Unit B, University Park. 15 Mar. 2012.

- ---. "SAP2000 Frame Element." Engineering Unit B, University Park. 1 Mar. 2012.
- - -. "Simplifying Structural Modeling Assumptions." Engineering Unit B, University Park. 17 Jan.
 2011.
- Lstiburek, Joseph. "Air Barriers vs. Vapor Barriers." *Building Science*. Building Science, 2000. <a href="http://www.buildingscience.com/documents/reports/rr-0004-air-barriers-vs-vapor-barrie
 - --. "EIFS Problems and Solutions." *Building Science*. Building Science, July 2007.
 http://www.buildingscience.com/documents/digests/bsd-146-eifs-problems-and-solutions/?searchterm=stucco.
 - --. "Face Sealed vs. Drainable EIFS." *Building Science*. Building Science, Mar. 2004.
 http://www.buildingscience.com/documents/reports/rr-0406-face-sealed-drainableeifs>.

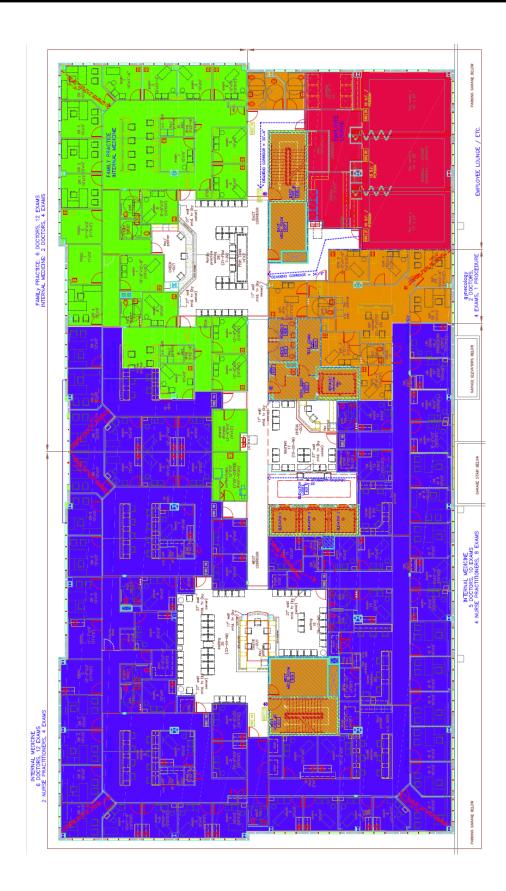
- - -. "Moisture, Building Enclosures, and Mold." *Building Science*. Building Science, Dec. 2001. .
- ---. "Water-Managed Wall Systems." *Building Science*. Building Science, Mar. 2003.
 http://www.buildingscience.com/documents/digests/bsd-146-eifs-problems-and-solutions/?searchterm=stucco.
- OSHA. "OSHA Accident Report." *OSHA*. U.S. Department of Labor, 2014. https://www.osha.gov/pls/imis/accidentsearch.accident_detail?id=601997>.
- Pactiv, ed. "C2000." GreenGuard. Pactiv, 2011.

<http://www.trustgreenguard.com/commercial.aspx#building-wrap.c2000>.

Portland Cement Association (PCA). "Concrete Durability." *Portland Cement Association (PCA)*. Portland Cement Association (PCA), 2013.

<http://www.cement.org/for-concrete-books-learning/concretetechnology/durability/ corrosion-of-embedded-materials>

- Snoonian, Deborah. "Sleuthing Out Building Failures." *Architectural Record*. McGraw Hill, Aug. 2000. http://archrecord.construction.com/resources/conteduc/archives/research/8_00_1.asp.
- Solnosky, Ryan L. "Intro Progressive Collapse Analysis & Design." Willard Building, University Park. 30 Nov. 2012.
 - ---. "Structural and Facade Design." Willard Building, University Park. 15 Oct. 2012.
- Texas Department of Transportation (TxDot). "Roadway Design Manual." *Texas Department of Transportation (TxDot)*. Texas Department of Transportation (TxDot), Dec. 2013. http://onlinemanuals.txdot.gov/txdotmanuals/rdw/rdw.pdf.
- This Old House. "Attach the Lath." *This Old House*. This Old House, 2012. http://www.thisoldhouse.com/toh/how-to/step/0,20208184_20474853,00.html.
- Tilt-Up Concrete Association (TCA). *Tilt-Up Construction and Engineering Manual*. 6th ed. Mount Vernon: Tilt-Up Concrete Association (TCA), 2006.


- ---. "Top Ten Lists." *Tilt-Up Concrete Association (TCA)*. Tilt-Up Concrete Association (TCA), 2013. http://www.tilt-up.org/topten/index.php>.
- U.S. Army Alaska Public Affairs Office. "Force Protection Design Criteria." *U.S. Army Alaska*. U.S. Army Alaska Public Affairs Office, 2014. http://www.usarak.army.mil/conservation/Aviation/FWA_InstallationDesignGuidelines16_Secti

on12.pdf>.

Figure AA.1, First Floor Plan w/ Tenant Build-Out Source: Oliver, Glidden, Spina & Partners

Appendix A: Floor Plans & Elevation

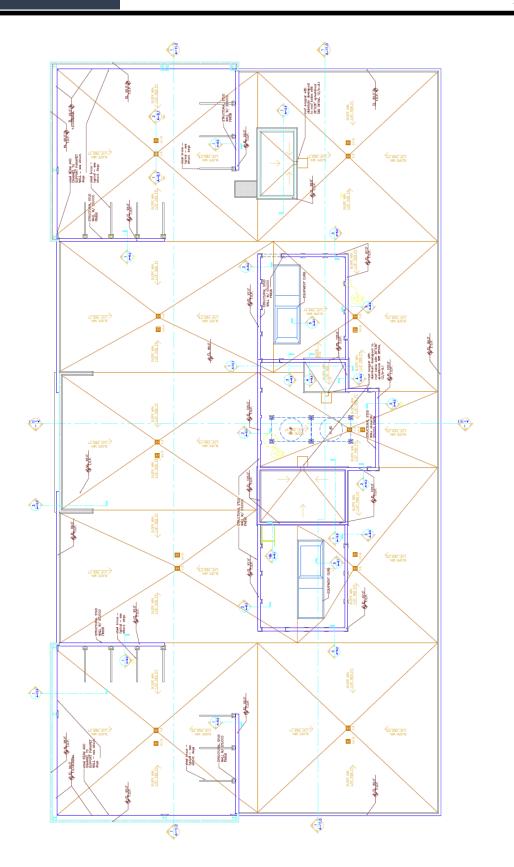


Figure AA.3, Roof Drains Source: Oliver, Glidden, Spina & Partners

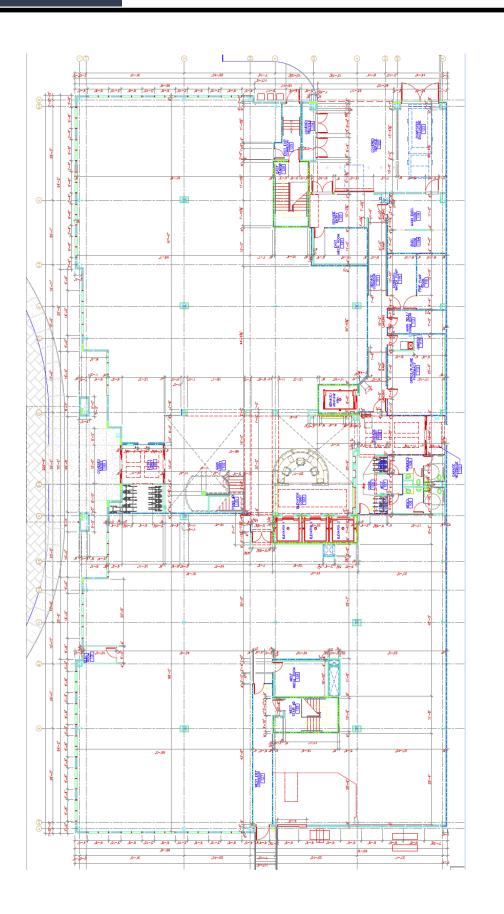


Figure AA.4, Typical Column Layout Source: Oliver, Glidden, Spina & Partners

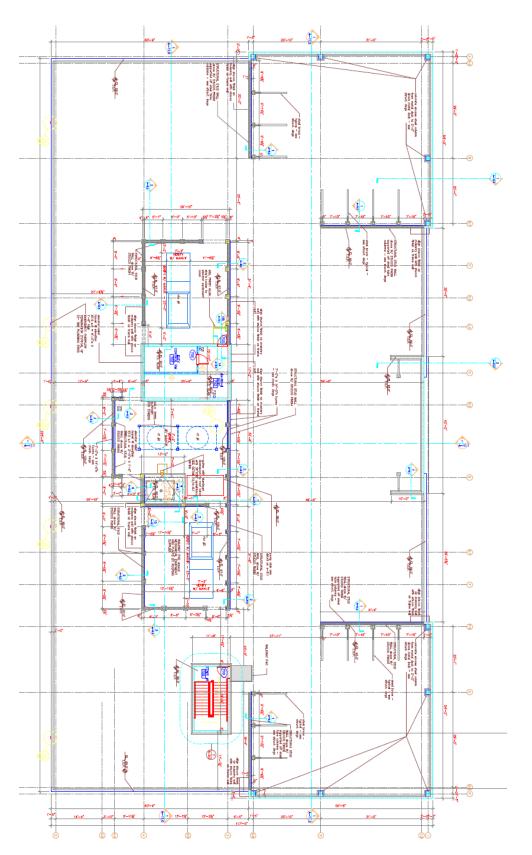
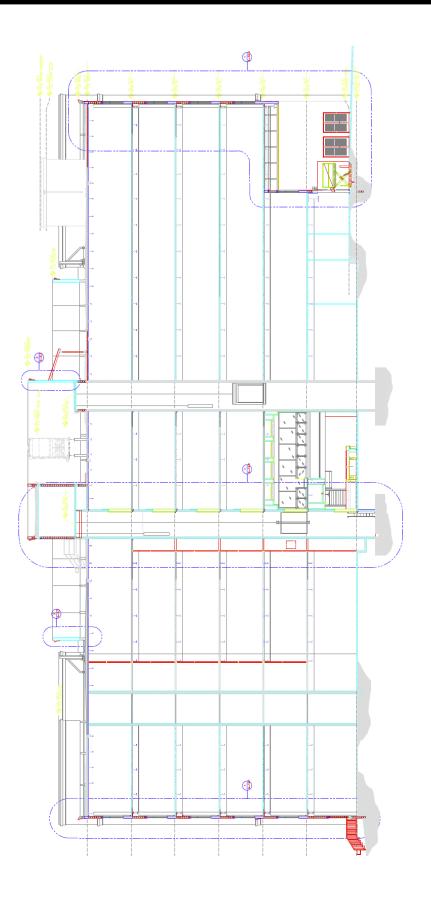
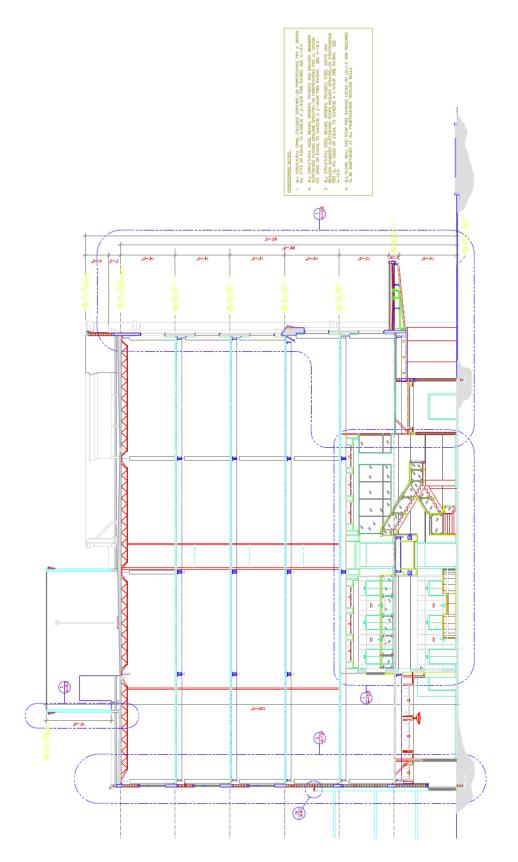
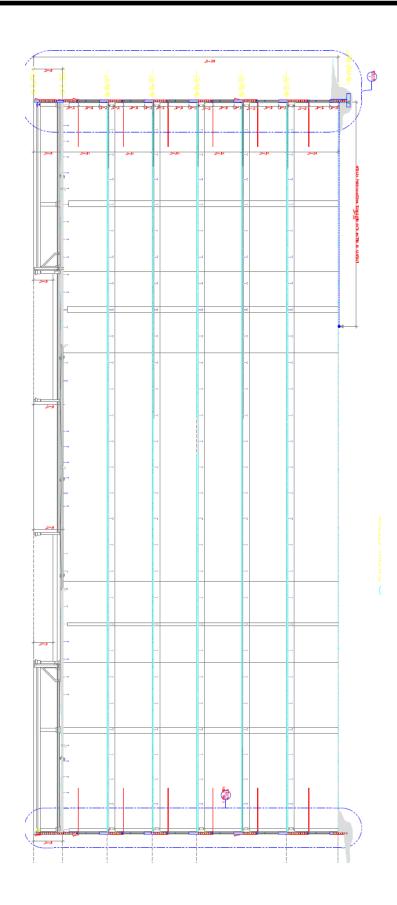
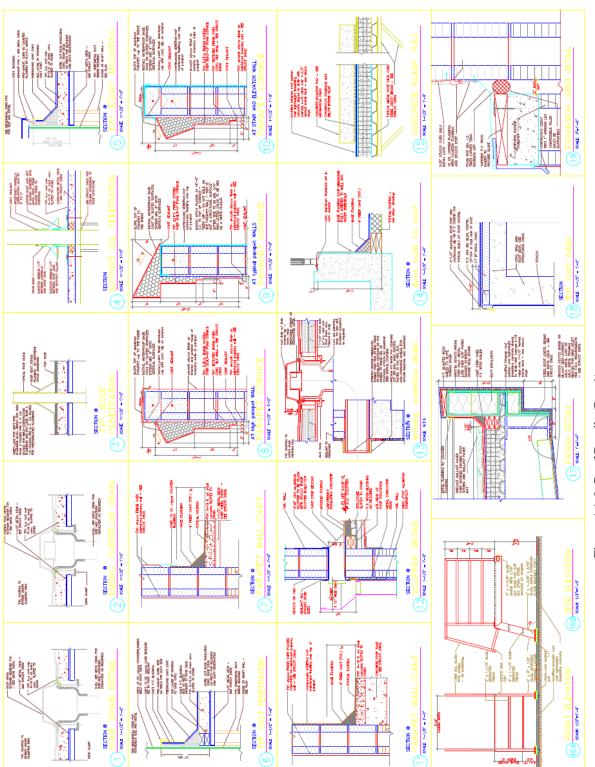
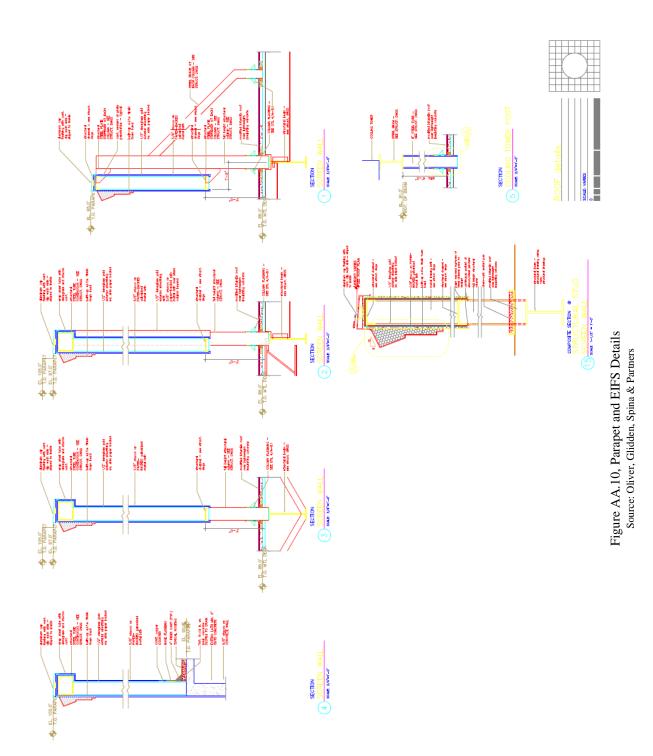


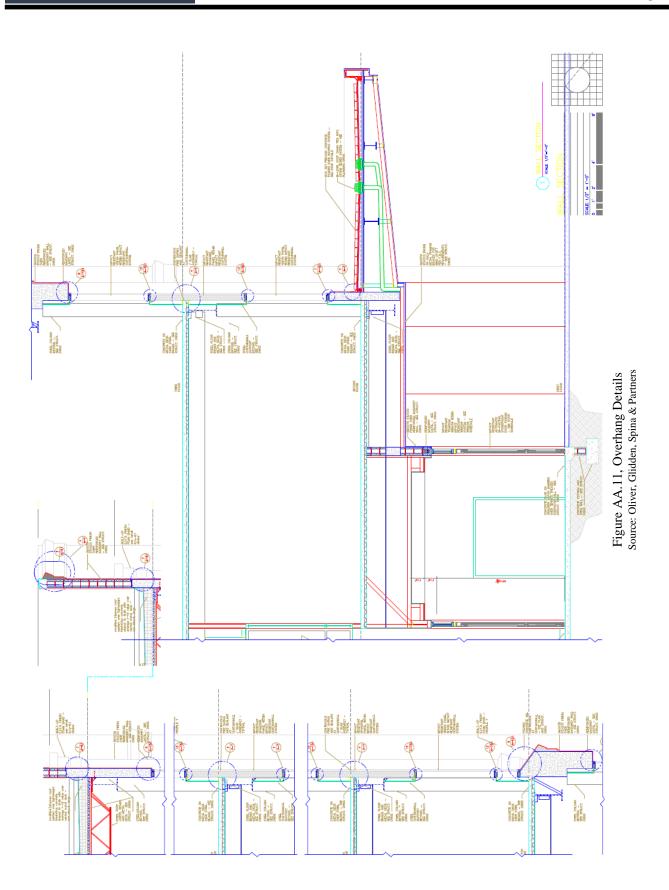
Figure AA.5, Roof Plan Source: Oliver, Glidden, Spina & Partners

Thesis Report


Figure AA.6, Longitudinal Building Section Source: Oliver, Glidden, Spina & Partners





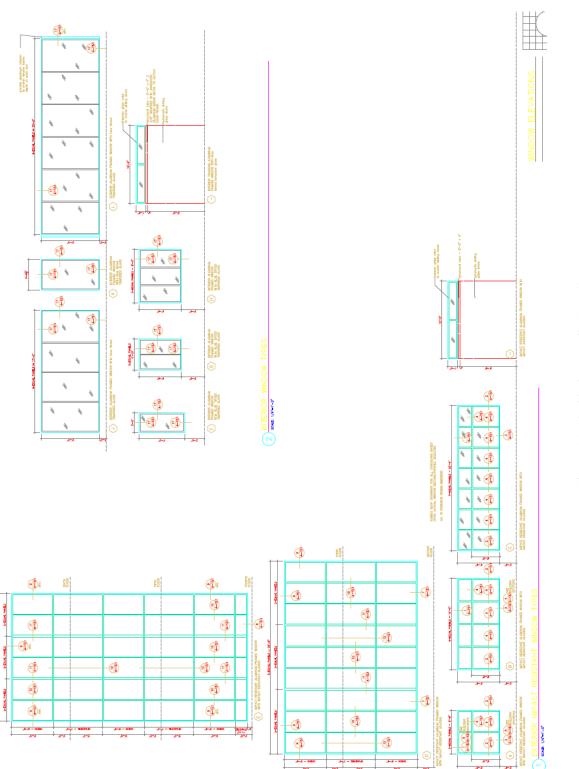
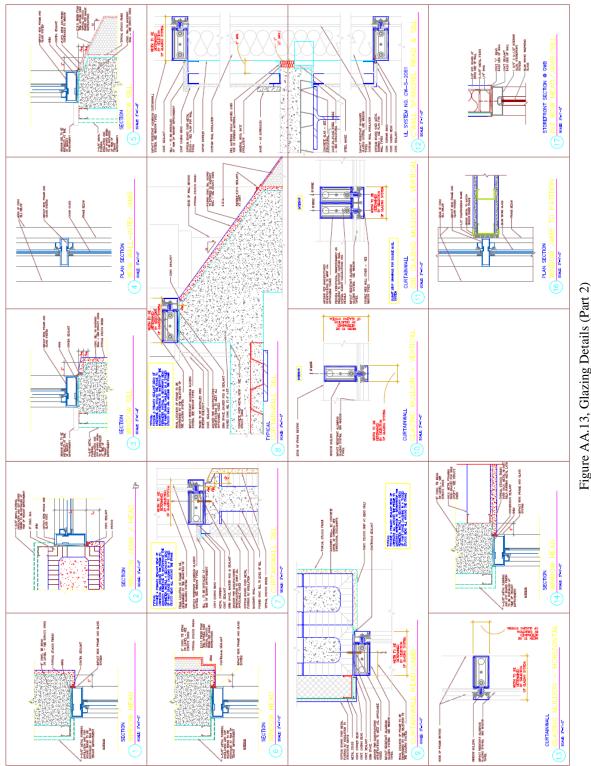
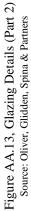




Figure AA.12, Glazing Details (Part 1) Source: Oliver, Glidden, Spina & Partners

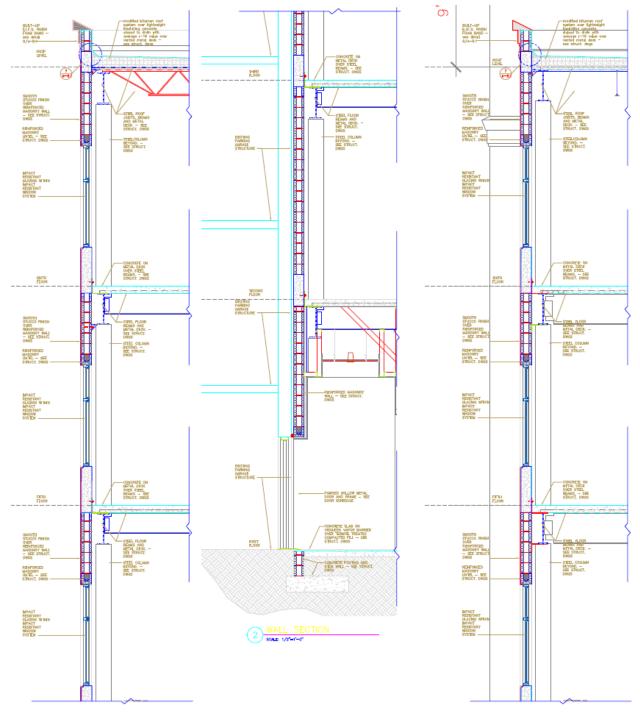


Figure AA.14, Façade Details Source: Oliver, Glidden, Spina & Partners

	Registering Sector Registering Sector <t< td=""></t<>

Figure AA.15, Partial Design Spec (Part 1) Source: Oliver, Glidden, Spina & Partners

ADD CONTRACT CONTRACT AND C	 And State and and a protect of an experiment of the state of a second of a constraint of a second of a constraint of a second of a second	MILLER DE LA PORTE DE LA PO	 Control Protections Control Protocol Control Protocol Control Contro	 an anotanic and an and an an an an and an an an an and an an
 BARD MARK REAL PROPERTIES AND ADDRESS ADD	 Provide calcoling and provide c	_	 Stephen R. M. S. M. S.	 Chow endort, the number of the Shafe Table of the Shafe o
COLORIZED OF PARAME • Non-Section of any parameters • • • • • • • • • • • • • • • • • • •	Market / Johnson and Market and	A A Sector and a sector fragments where a sector provide a sector and a sector	The main industry 100.0.1 THE DEST, REGIST, REGIST	A contract of contract on cont
 след сталости след ст	Character concentration gamma g gamma gamma g	Proc. 1. Sec. Strength and the system of the source of the system of	A control at most and a control of an extended proved a control of a c	EVER JURG

Figure AA.16, Partial Design Spec (Part 2) Source: Oliver, Glidden, Spina & Partners

Thesis Report

 Court, M., Andreau, M., 2019, No. Provincios, Distr. Winner, A. H. Harrison, I. H. Harrison, A. Harrison, H. Harrison, H.	Control and	 An and Andrewsky and Party of Anthony Condition of Bill Advisor and Anthony Condition and Anthony Condition and Anthony Condition and Anthony Condition and Anthony Condition and Anthony Condition and Anthony Anthony Condition and Anthony Anthony	 Constrain designation of the strain designation of the st	
석급 또	 March L, Langeur JM, Langeur L, Marchang L, Marchang L, Langeur L, Langeur	 Berg, and Sandard and Sandard	 (a) Contraction of an expension of a property of	esign Spec (Part 3) . Spina & Partners
Cond Control must current (LLLA, Less and Leven (LM) Directo contact (LLLA, Less and Leven (LM) Other contact (LLLA, Less and Leven (LM) Other contact (LLLA, Leven (LM) Other contact (LLLA, Leven (LM) Other contact (LLLA, Leven (LM) Other contact (A paneling is y industria. The other prior is a proving the stateway of the state	 Sterna distante e Rei (Li Gonzulles assente) esta presenta de la factoria de la fac	 Edition. Technika of the standard structure of the standard structure	Figure AA.17, Partial Design Spec (Part 3) Source: Oliver, Glidden, Spina & Partners
 (Bitta) Antonia. (Bitta) Antonia (Bitta) (Bi	 Bergin Station (1998) Ber	 The control into a control of stational control of the control of th	 and match and part part part of each of a start and a	

Thesis Report

 MILLI MARCE 	
<section-header></section-header>	Design Spec (Part 4) n. Spina & Partners
<page-header><section-header><section-header><section-header><list-item></list-item></section-header></section-header></section-header></page-header>	Figure AA.18, Partial Design Spec (Part 4) Source: Oliver, Glidden, Spina & Partners
<section-header><section-header><text><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></text></section-header></section-header>	

	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>
S	<section-header></section-header>
Source: Oliver, Glidden, Spina & Partners	 C. C. C
· · · · · · · · · · · · · · · · · · ·	<text></text>

Figure AA.19, Partial Design Spec (Part 5)

<section-header></section-header>
<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text>
<text></text>
 a. Construction of a construction o

Thesis Report

Figure AA.20, Partial Design Spec (Part 6) Source: Oliver, Glidden, Spina & Partners

Thesis Report

г

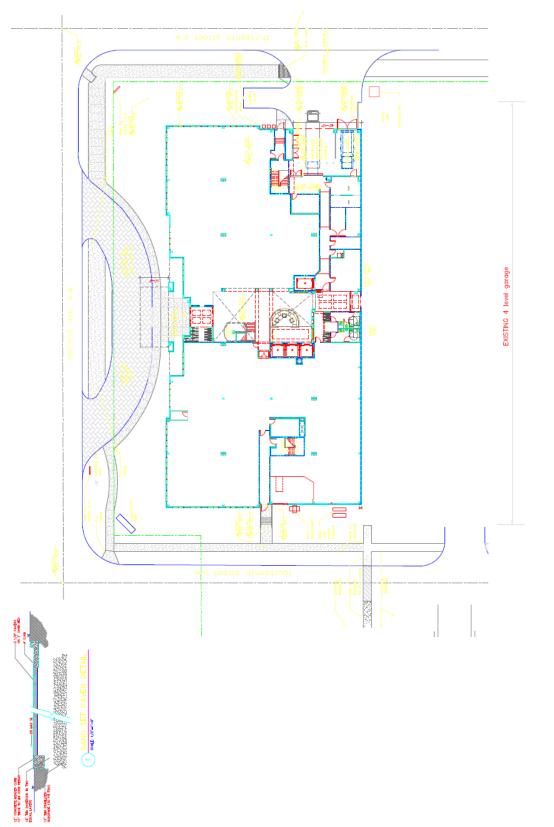
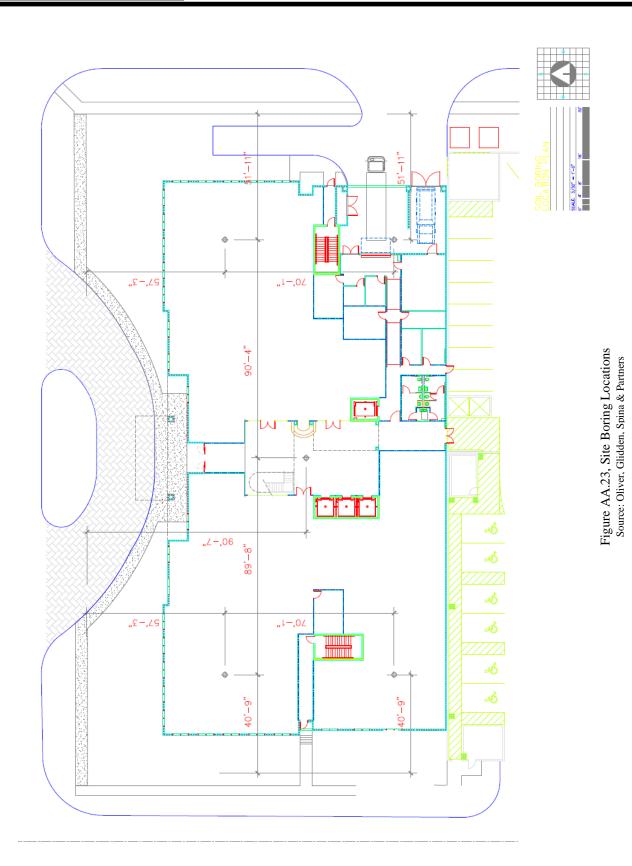
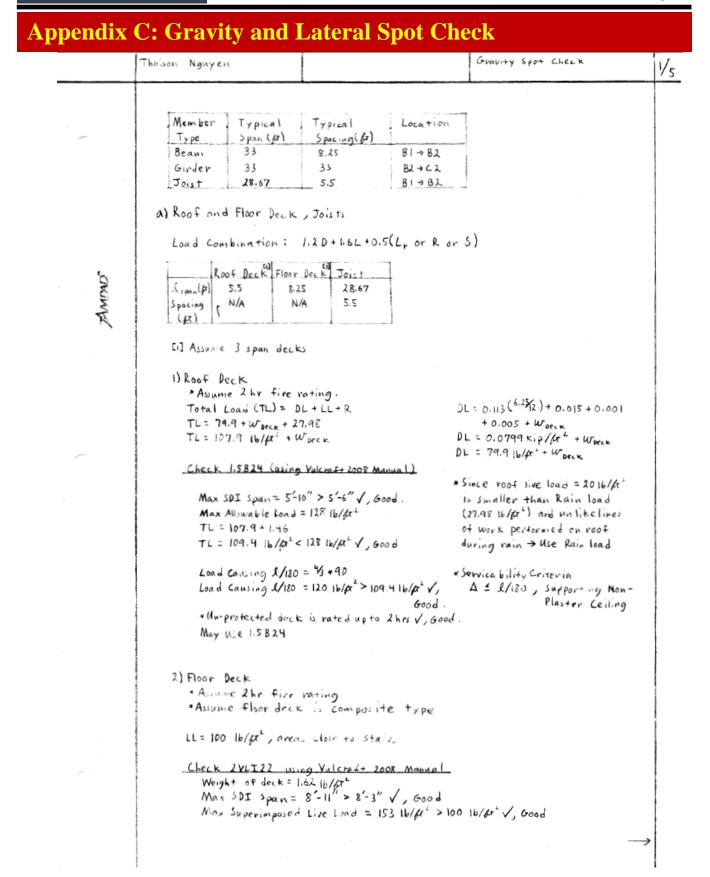



Figure AA.22, Site Plan Source: Oliver, Glidden, Spina & Partners

Appendix B: Load Determination Dead, Live, Rain

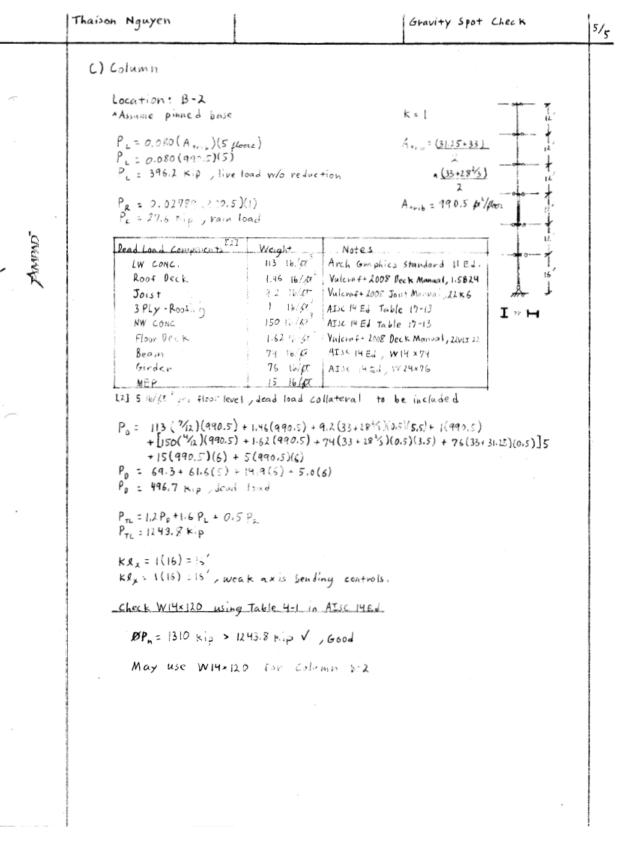
	Thaison Nguyen Load Determination - DEAD, LIVE 1/5 RAIN
arout	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>_</u>	[3] Roof has partitions enclosing Machanical equipment and stairwell. ** 5 lb/ft ¹ dead load collateral : Material Weight Notes
	NW. CONC150 $16/fr^2$ AISC 14EJ. Table 17-13Lw. CONC113 $16/fr^2$ Arch. Graphics Standards 11Ed.VCT1.33 $16/fr^2$ Arch Graphics Standards 11Ed.Ceramic10 $16/fr^2$ AISC 14EH. Table 17-13PorcelainTile3 $16/fr^2$ J Ply Roofing1 $16/fr^2$ AISC 14EJ. Table 17-13Laminated8.2 $16/fr^2$ AISC 14EJ. Table 17-13MEP15 $16/fr^2$ ASCE 7-05 $4.2.2$
	a) Floor / Deck Thickness i) Level: 0 $T_{floor} = 4''$, solid reinf. conc. 2) Level: 1 \Rightarrow 5
	$d_{deck} = 2''$, assume metal deck has equal size corregations $T_{floor} = 5''$ $T_{floor,eq} = T_{floor} - d_{dec}/2 = 4''$, use to determine conc. weight


	Thaison Nguyen		Load Determination - DEAD, LIVE 2/5 RAIN
<i>(</i> .	$T_{\text{floor}} = 10 \frac{18}{8} \rightarrow 3$ $T_{\text{floor}, \text{ang}} = (10\frac{18}{8} + 3\frac{13}{4})$ $T_{\text{floor}, \text{ang}} \approx 7^{\prime\prime}$	metal deck has equal sites $\frac{1}{2}$	
orampt	1) Level : 0 $DL = 0.150(T{abov})(A_{abov})$	ht w/o structurn/steel, M gross) + 0.015(Agross - Asiopenia 3) + 0.015(24153 - 293 - 724) +	- A stars) + 0.005 (Aaross)
~	+ 0.5	(J _{floor} , eq)(A _{gross} - A _{floppmung})+ 05(Agross) 1440 - 1571) + 0.015(26440 - 157 40)	
	+ 0.005 (A gro	,440 - 293) + 0.015 (26440 - 293	
	4) Love 1: Roof $DL = 0.113 (T_{41407, eq})$ $+0.005 (A_{grave})$ DL = 0.113 (6.25/12) (2) $DL = 1794.1 \ Kip$	(Agross)+0.015(Agross = 0.20)) (6440)+0.015(26440)(0.20)+0.00	+ 0.001(Ayross) 1(25940)+0.005(26440)
			>

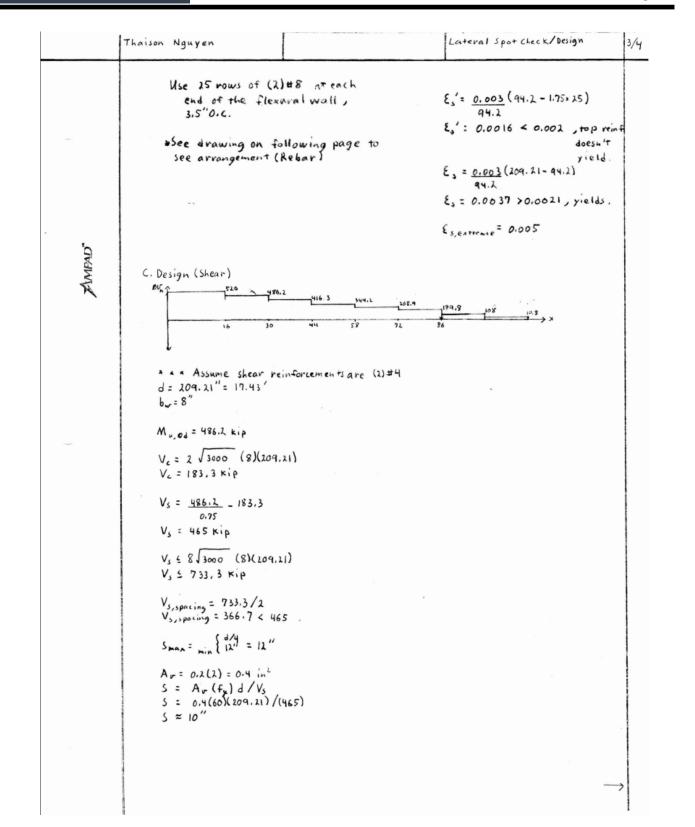
```
Load Determination - DEAD, LIVE 3/5
        Thasah Nguyan
                                                                                                            RAIN
             C) Dead Weight of Flooring
                 Floor Level
                                                                                        2 or 3 or 4 or 5
                 Flooring
                                   VCT
                                                                        Cenamic
                                                                                       VGT
                                              Ceramic
                                                             VCT
                                                                                                      Ceramic
                                                            531
               Area (fr')
                                                                                      .531
                                  1410
                                             2841
                                                                         653
                                                                                                      339
                * Other areas have exposed conc.
                 1) Level: O
                    DL = 1.33(1410) + 10(2841) = 30.3 Kip
                2) Level: 1
"ONANA
                   DL = 1.33 (531) + 10 (653) = 7.2 Kip
                3) Level: 2 > 5
                   DL=1.3(531)+10(339) = 4.1 Kip/floor level
             d) Dead Weight of Facade Envelope (by story)
                 i) Story: 1
                     \begin{aligned} & \text{DL} = 0.150 \left( A_{\text{facility}} - A_{\text{glating}} \right) + 0.0082 \left( A_{\text{glating}} \right) \\ & \text{DL} = 0.150 \left( 11093.33 - 1588.00 \right) + 0.0062 \left( 1588.00 \right) \end{aligned} 
                    DL = 1438.8 Kip
                 2) Story: 2
                    DL = 0.150(9706.67-1920.20) + 0.0082(1920.20)
                    DL = 1183.7 Kip
                 3) story: 3
                    DL = 0.150 (9706.67-1846.20) + 0.0082 (1846.20)
                    DL = 1194.2 Kip
                 4) Story : 4
                    DL = 0.150 (9706.67-2681.60) + 0.0082 (2681.60)
                    DL = 1073.7 Kip
```

	Thaison Nauyen Loud Determination - DEAD, LIVE RAIN
	5) Story: 5
	DL = 0.150 (9706.67 - 2780.40) + 0.0082 (2780.40) DL = 1061.7 Kip
	6) Story : 6
	DL = 0.150 (9706.67-2783.40) +0.0082 (2783.40) DL = 1061.3 Kip
_OKAWY	?) Story : Roof
AN A	DL = 0.150(5079.00) DL = 761.85 Kip
	e) Live Load w/o Live Load Reduction
_	Room Type Stairs Lobby & First Floor Corridor Corridor Above First Floor 20 20 20 20 20 20 20 20 20 20
	Partitions : 15 16/022, per ASCE 7-05 4.2.2
	1) Level : 0
	LL = 0.100 (Agross - Agropping - Astairs) + 0.100 (Astairs) LL = 0.100 (24153 - 293 - 724) + 0.100 (724) LL = 2313.6 Kip
	2) Level: 1
	LL = 0.080(26440 - 1571.00 - 609.00)+0.100 (609.00) LL = 2001.7 Kip
	3) Level: 2 - 5
~	LL = 0.080 (26440 - 293.00 - 609.00) + 0.100 (609.00) LL = 2103.9 Kip

	Thaison Nguyen		Load Determination - DEAD, LIVE 5 RAIN	15
_	F) Rain Load Rainfall Rate(I):4,5	" per hour (100 year retar	period); per International	
"CLANDAD"	$d_{s} = \chi^{\frac{5}{2}} + 4(\frac{14}{4}) = 3,4$ $d_{h} = 1 + \left[\frac{(Q - 80)}{(170 - 80)}\right] =$ $R = 5.2(d_{s} + d_{h})$ $R = 5.2(3.63 + 1.738)$	Plumbing Code 2009 AP (A) = 52 × 60.17 = 3128.7 (Q) = 0.0104(A)(I) = 146.42	pendix B, ASCE7-05 C8.5 , per ASCE7-05 C8.5 , per ASCE7-05 C8.3	
		×		
			\rightarrow	


_

	Thaison Nguyen		Gravity Spot Check	2/5
-	to achieve 2 h	is or spraxed filter fire pro r. nating 2. w/ either cementitous or		
Orainty	Wu = 609.6 16/67 Wu, capacity = (29-28.6 Wu, capacity = 611.2 16/6 LL capacity = [(29-28.6 LL capacity = 611.8 1 611.8 16/67 > 153 * Use spray appli- to achieve 2 hr	$\mathbb{E}[U_{30ii+1}] = 5.5$ $\mathbb{E} = 5.5$ 		
] * 8.25 + 1.2(W _{bm}) ,2W _{bm} ,)(33 ²)/8 1W _{bm}		



trolling Lateral Load: Wind d Combination: 1.20 + L + 0.5 L + 1.6 W Design lateral force resisting member w, maximum overturning and shear mber w/ Max Overturning and shear : AVI-Y max = 1.6 (16608.2) , Using value calculated in - Irregularity and Wind max = 26573.1 Kip * 6x max = 1.6 (325) , Using value calculated in Irreg max = .520 Kip lassify Shear Wall design $M_{\rm H} = 86/21.08$ $M_{\rm H} = 4.08 > 3$; Slender /Flexural behavior Design by James K. Wright $M_{\rm T} = 129$ Design (Flexural)	I Irregularity Analysis Mularity Analysis = Irregularity and Wind - per Reinforced Conc. Mech. B- , James G. MacGregor \$18-5 pp.937
Design lateral force resisting member w, maximum overturning and shear nber w/ Max Overturning and shear : AVI-Y max = 1.6 (16608.2), Using value calculated in - Irregularity and Wind max = 26573.1 Kip * βx max = 1.6 (325), Using value calculated in Irreg max = :520 Kip lassify Shear Wall design /W = 86/21.08 /W = 4.08 > 3; Slender /Flexural behavior Design by James K. Wright 1/T = 86/(8/12) /T = 129	I Irregularity Analysis mularity Analysis = Irregularity and Wind - per Reinforced Conc. Mech. & , James G. MacGregor \$18-5 pp.937
nber w/ Max Overturning and Shear : AVI-Y max = 1.6 (16608.2) , Using value calculated in - Irregularity and Wind max = 26573.1 Kip * βx max = 1.6 (325) , Using value calculated in Irreg max =: 520 Kip lassify Shear Wall design /W = 86/21.08 /W = 4.08 > 3 ; Slender /Flexural behavior Design by James K. Wright /T = 86 / (8/12) /T = 129	Irregularity Analysis Warty Analysis - Irregularity and Wind per Reinforced Conc. Mech. & , James G. MacGregor \$18-5 pp.937
- Irregularity and Wind max = 26573.1 Kip * βx max = 1.6(325), Hoing value calculated in Irreg man = 520 Kip lassify Shear Wall design /W = 86/21.08 /W = 4.08 > 3; Slender /Flexural behavior Design by James K. Wright /T = 86/(8/12) /T = 129	per Reinforced Conc. Mech, & , James G. MacGregor \$18-5 pp.937
max = 1.6 (325), Hoing value calculated in Irreg max = 520 Kip lassify Shear Wall design $/W_{L} = 86/21.08$ $/W_{L} = 4.08 > 3$; Slonder /Flexural behavior Design by James K. Wright $/T_{L} = 86/(8/12)$ $/T_{L} = 129$	per Reinforced Conc. Mech. B- , James G. MacGregor \$18-5 pp.937
/W = 86/21.08 /W = 4.08 > 3 ; Slender /Flexural behavior Design by James K. Wright /T = 86/(8/12) /T = 129	, James G. MacGregor \$18-5 pp.937
/W. = 4.08 > 3 ; Slonder /Flexural behavior Design by James K. Wright /T. = 86/(8/12) /T. = 129	, James G. MacGregor \$18-5 pp.937
)esign (Flexural)	Shear reinforcement
	Shear reinforcement
*** Assume #8 flexural reinforcement, #4	
$\frac{1}{2} = 3000 \text{ psi}$ y = 60 Ksi z = 8 $A_s = 0.79 (2) = 1.58 \text{ in}^2 (2) #8 \text{ per town}$	$a = \frac{A_{s, to+} + f_{y}}{0.85 + 2 b}$ $a = \frac{h A_{s} (60)}{0.85(3)(8)}$
** Assume \$ = 0.9, where Es 20.005	$a = 2.94 \text{ mA}_{s}$
* Initially assume no top reinf. $M_u = \mathcal{D}A_{s,roy} f_u (d - \frac{\alpha_2}{2})$ $M_{u_{-}} = n A_s (d - \frac{\alpha_2}{2})$	d = 21.08(12) - 0.75-0.5-0.5 - <u>(n-1)</u> sc Sc = Space btw bars (0.c.)
(fr 905.1 = nAs {[251.21-0.5ns2+0.552] - 1,47nAs} 905.1 = nAs {[251.21+0.552] - [0.552+1,47As]n} 905.1 = 1.58n {[251.21+0.552] - [0.552+1,47(1.58)]n	$h = \# \alpha K R R R R R R R R R R R R R R R R R R$
-	$n_{max} = \frac{21.08(6) - 1.75}{5} + 1$
1, x* + b, x + c, = 0 1, = -0.79 s2 - 3.67 1, = 396.9 + 0.79 s2 1, = - 5905.1	$n_{max} = \frac{21.08(6) - 1.75}{S_c} + 1$ $n_{max} = \frac{124.73}{S_c} + 1$
	1905.1 = 1.58n 2 [251.21+0.552] - [0.552+1.47(1.58)]n 1905.1 = (396.9 + 0.7952)n - (0.7952+3.67)n ² a, x ² + b, x + c, = 0

$S_{c} = 2''$ $a_{1} = -0.79(6) - 3.67$ $a_{1} = -8.41$ $b_{1} = 396.9 + 0.79(6)$ $b_{2} = 401.64$	$n_{max} = 63$ rows a = 2.94(21)(1.58)
$a_1 = -8.41$ $b_1 = 396.9 + 0.79(6)$ $b_2 = 401.64$	
6, = 396,9+0.79(6) 6, = 401.64	a = 2.94(21)(1.58)
	a = 97.5
h = 20.2 $h = 21 rows \le h_{max}$	
	$d = \frac{251.21 - (21 - 1)(2)}{2}$
52 = 3.5"	d = 231.21"
a = -6.44	hmax = 35 rows
h = 24.3 $h \approx 25 rows \leq h max$	a = 2.94 (25)(1.58) a = 116.1"
Pmil, thermal/cracks control = 0.0018	d = 251.21 - (24)(3.5)
Ps, min = { 3VF2 /fy = 0.0033, ACI 318-11 \$10.5, 1 200/fy flexusmembers	d = 209.21" C = a/0.85 $\xi_{s, extreme} = 0.003 (251.21 - 136.59)$
Max rebar spacing ishall be 18", per ACI 318-11 §7.12.2.2 → p_== 2(0.79)/18=0.087, controlling	136.59 Es, ca treme = 0,00252 <0.005, can + use 0=0.9
naid = additional rows of (L) #8 to satisfy controlling min. reinf.	
Nadd = 79.71/18 - 1 Nadd = 4 , assumed to not contribute to	
Determine As min to ach. \$ = 0.9	
0.85 f' $ab + A_{s,min} \in S \in S = A_s f_y$	E = <u>2.003</u> (d-c)
0.85(3)(8)(94.2) + n (1.58)(0.003) = 39,5(60) (94.2-1.75n')E	0.005 C = 0.003 (d - C) $C = \frac{3}{8} d_{max}$
153868.9 + 12948.7n' - 240.6n' = 2370 -240.6n' + 12948.7n' + 151498.9 = 0 n'= 25 rows	c = 0.375(251,21) c = 94.2
$A_{s,min} = 25(1.58)$ $A_{s,min} = 39.5 m^{2}$	$d' = (n'-1)s_{c} + 1.75$
	d'= 0.552n'-0,552+1,75 d'= 1,75n'
	$a_{1} = -6.44$ $b_{1} = 399.25$ $h = 24.3$ $h \approx 25 rows \leq h_{max}$ $P_{mih, thermal/cracks control = 0.0018$ $P_{s,min} = \begin{cases} 3\sqrt{f_{c}} / f_{y} = 0.0033 , A(1318-1180.5, 1130.7, 1130$

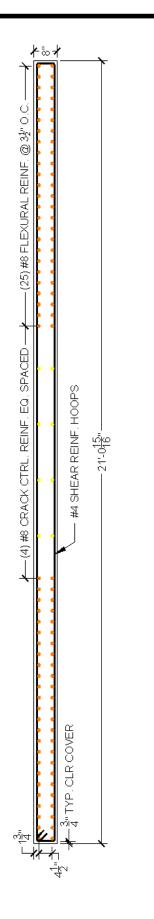
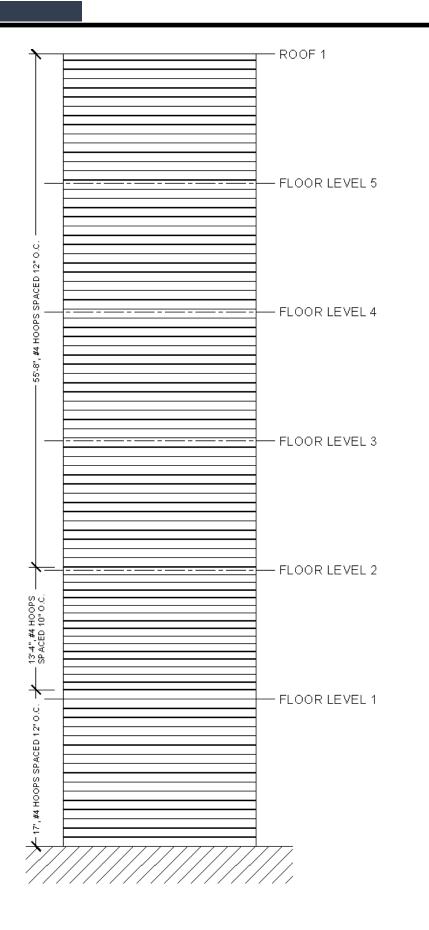



Figure AC.1, Reinforcement

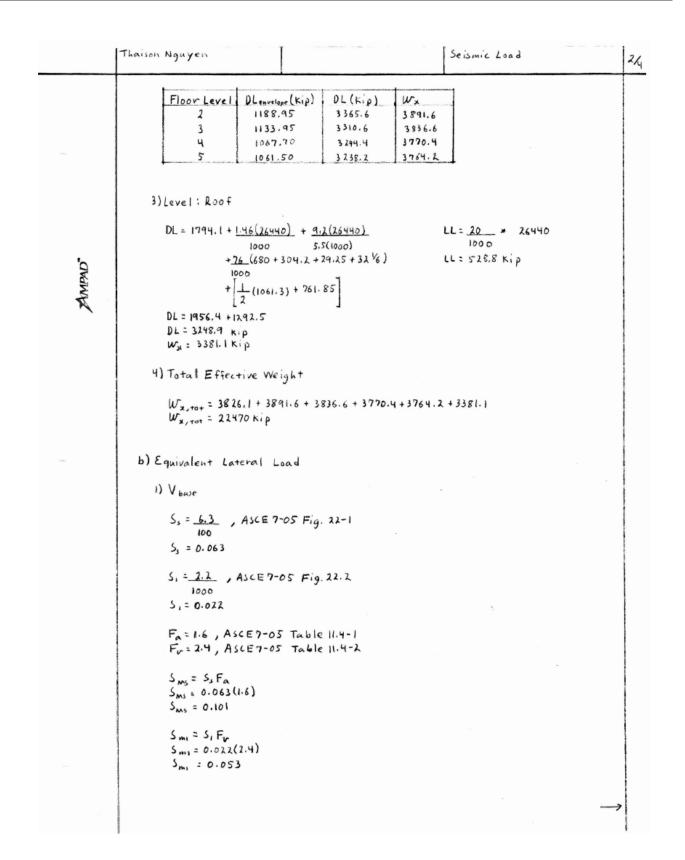
	Thaison Nguyen Lateral Spot Check/Design	4
	1) Determine when S=12"	
	$V_s = A_{ir}(f_{ir}) d/s$	
	Vtot,u = (Vs + Vc)0.75 Vtot,u = [0.4(60)(209,21)/12 + 183.3]0.75 Vtot,u = 451,29 Kip , where s can equal 12"	
	** * Use S= 12" when I < d , for thermal and crack control.	
TAMPO	* See drawings on following page see shear reinf, arrangement.	

Figure AC.2, Shear Reinforcement Spacing

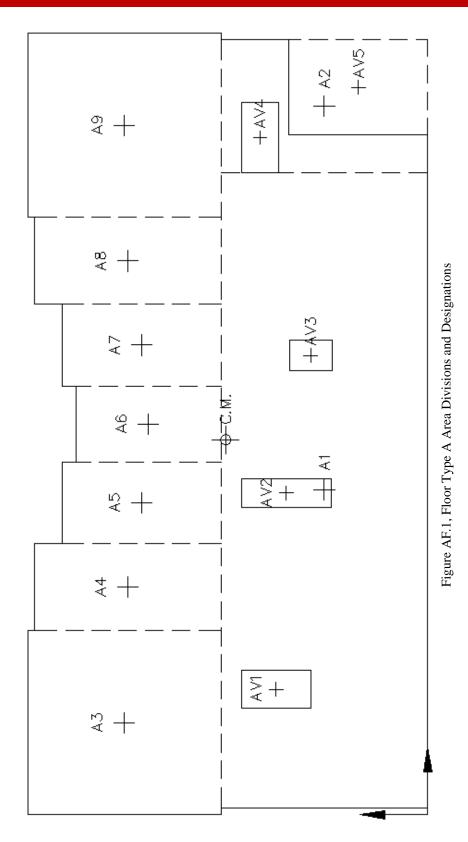
Appendix D: Wind Load Calculations

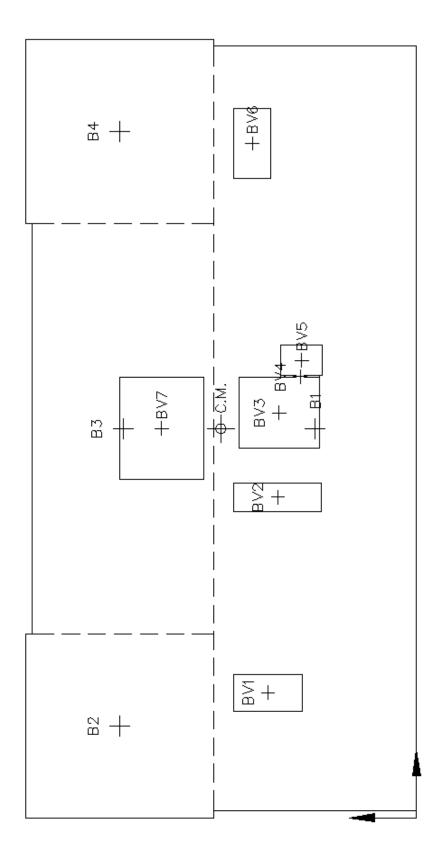
	Thaison Nguy					
	Tunnenterre	Catalogy : T	□, ASCE7-05 T	ahla)=1		
			15 , ASCE 7-05 Ta			
	Exposure Ca	tegory : E	3 , ASLE 7-05 \$	6.5.6.3		
	Mean Height		7,5			
	Building Fac	e North Sou	th East West	Roof		
			9 10957.9 10957			
					d floor diaphragm	
	rigisity	, it is assum	ie that the floo	ir diaphram wi	Il crack first	
_	V = 130 mi/h	r, ASCE 7-05	Figure 6-1			
TAMPA			[1]			
\$	Compensat		ASCE Notes			
	[1] Component	o.85 0	 A second sec second second sec	Table 6-4		
	Height (At)		K.	Notes		
	in gritter	Case I:CCL	Case II : MWFRS			
	≤ 15	0.7	0.57	ASCE 7-05 Table 6	-3	
	20	0.7	0.62			
	25	0.7	0.66			
	30	0.7	0.7			
	40	0.76	0.76			
	50	0.81	0.81			
	60	0.85	0.85			
	70	0.89	0.89			
	80	0.93	0.93			
	90	0.96	0.96			
	100	0.99	0.99	1		
	140	1.04	1.04			
	K27 = 1, n	oridges or es	carpments at sit	e		
	60 = 10	S ALLE D-DE	5			
	00 p1 = = 0.1	18 , ASCE 7-03	Figure 0-3			
	a = \$ 0.1 + L	east Horizontal	Dimension , A	SCE 7-05 Figure	6-17	
	(3			5		
	max					
	$a = \begin{cases} 0.1 (1) \end{cases}$	7.42)				
	max 3					
	a = 11.74'					
	a = 11.74					
	Wind Pero en	lice lak to:	North /South Wall	Fait/West Wall	1	
	3(47		229.5	117.42	1	
	Landstrate of Holys	Anno e per ser e comence de la competencia			-	
	2					

	Windward Leewind Side Roof Notes L/B 1.95 0.51 0.95-6"] [95-6", [191-0", Asce7-05 Fig.6-6] Distance from 1.95 0.51 0.95-6"] [95-6", [191-0", Asce7-05 Fig.6-6] Windward Edge 1.95 0.7 0.9,0.18 0.5,0.18 \$6.5,0.18
_OVAWA	Wall Perpendicular to: North and South Facing Walls Notes Wall Windward Leeward Side Roof Zone 4 5 4 5 1 2 3 Area (fr^2) 19170 2243 19170 1243 8715 2243 18845 5441 1654.4 Gep. ccl 0.6 0.7 1 0.7 1 0.9 1.6 2.3 Asce 7-05 Fig 6-17 Wall Perpendicular to: East and West Facing Walls Notes Notes Wall Windward Leeward Side Roof Wall Windward Leeward Side Roof Hone 4 5 4 5 1 2 3 Area (ir^4) 8715 2243 1970 2243 18745 3 45 4 5 1 2 3 Mail Windward Leeward 5 1 2 3 3 4 5 1 2 3 Area (ir^4) 8715 </td
	Building Natural Frequency $(n_1) \sim 100$ /Mean Height, ASCE C6.5.8, Eq. C6-17 Building Natural Frequency $(n_1) \sim 1.047$ Tn, Lowerband = 75 /Aeigt = 86) = 0.87 sec, per ASCE7-05 Eq. C6-18 Tn, avg = 100 / Lheight = 80 = 1.16 sec, per ASCE7-05 Eq. C6-17 Ge = 0.85, contervative rigid diaphragms
~	$q_1 = 0.00256 \text{ K}_2 \text{ K}_{44} \text{ K}_4 \text{ V}^2 \text{ I}$, see excel table following this page $q_1 = 0.00256 (0.99)(1)(0.85)(130^2)(1.15)$; leeward and side walls $q_1 = 41.9 \text{ Ib}/4t^2$
	$P_{mwFhs} = qG_fC_P - q_i(GC_{Pi})$, $q_i = q_h$ for conservative internal pressuritation. $P_{ccl} = q(GC_P) - q_i(GC_{Pi})$, $q_i = q_h$ for conservative internal pressuritation.
	* See excel table following this page for MWFRS and CCL Wind loads.
	Vbase, wind I North/south wall = 916,2 Kip Vbase, wind I North/south wall = 363.3 Kip
	M tot overturn, wind I North/South Wall = 47192.5 Kip-ft M tot overturn, wind I East/West Wall = 18152.9 Kip-ft
	* Load distribution is on excel sheet following this page

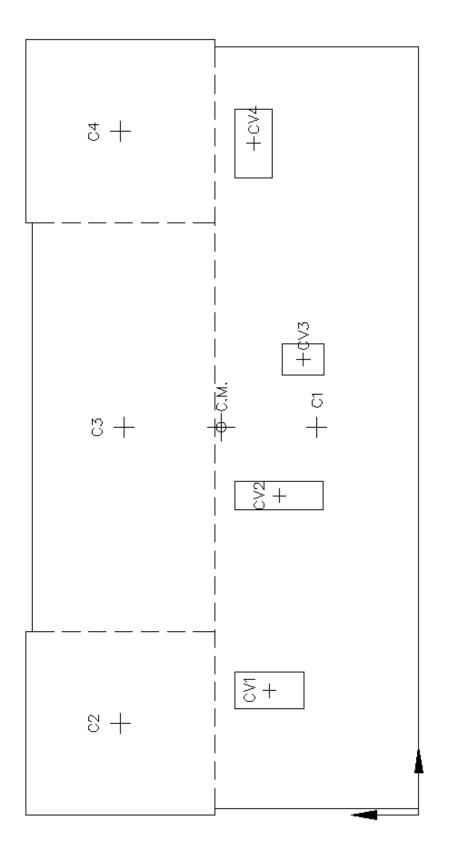

		q _I (GC _{pI}), Conservative								7 E.A	5							
				Cp = 0.18						E 44	- t-0							
			Roof	Cp =0.9						20.02	CN.7C							
	MWFRS		æ	Cp = 0.5						17 70	61.11						orces	
res (lb/ft²)	MV	զգեր		Cp = 0.3						10,60	00.01						External Wind Forces	
Design Wind Pressures (lb/ft ²)		ď	Side							1010	10.47						Ĕ	
Design			Leeward	B/L = 0.51						17 70	61.11							
			Leev	B/L = 1.95						10.60	00.01							
			Windward		16.39	17.83	18.98	20.13	21.86	23.29	24.44	25.59	26.74	27.61	28.47	29.91		
	ressure q _z	(Ib/ff ²)	MWFRS		24.1	26.2	27.9	29.6	32.1	34.3	35.9	37.6	39.3	40.6	41.9	44.0		
	Velocity Pressure ((II)	CCL		29.6	29.6	29.6	29.6	32.1	34.3	35.9	37.6	39.3	40.6	41.9	44.0		
	Height (ft)				<u>≤</u> 15	20	25	30	40	50	60	70	80	06	100	120		

		-	_	_	-	-			
Moment (kip-ft)	Wind Perpendicular to East/ West Wall	0.00	790.87	1553.67	2440.65	3387.61	4380.35	4080.71	1519.07
Story Overturning Moment (kip-ft)	Wind Perpendicular to North/ South Wall	00.00	1937.85	3722.82	5776.66	7947.72	10208.27	14490.78	3108.66
ear (kip)	Wind Perpendicular to East/ West Wall	363.28	337.85	288.42	236.63	181.16	122.76	61.92	14.47
Story Shear (kip)	Wind Perpendicular to North/ South Wall	916.18	853.41	732.30	608.20	476.92	339.89	198.10	29.61
	Wind Perpendicular to East/ West Wall	25.43	49.43	51.79	55.47	58.41	60.84	47.45	14.47
Wind Load on Floor Diaphram (kip)	Wind Perpendicular to North/ South Wall	62.76	121.12	124.09	131.29	137.03	141.78	168.50	29.61
Mid	Elevation (ft)	8	23	37	51	65	62	95.5	
Elevation	(H)	0.0	16.0	30.0	44.0	58.0	72.0	86.0	105.0
Floor Level		0	1	2	m	4	5	Roof 1	Top

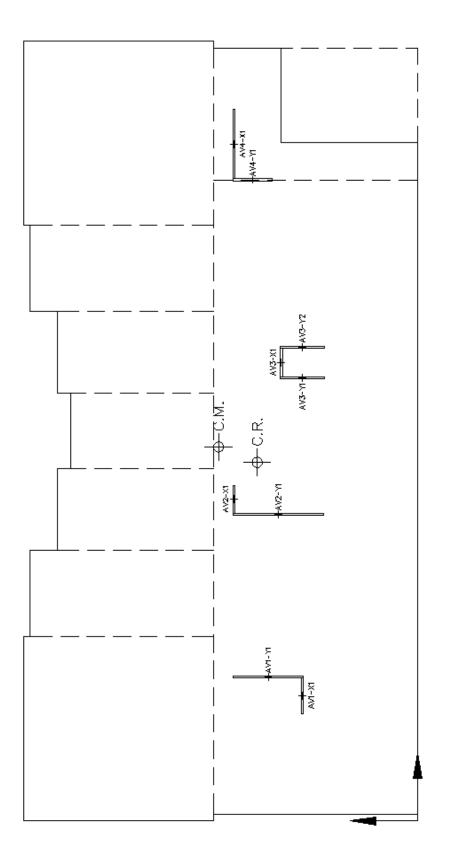

						Design Wind	Design Wind Pressures (lb/ft ²	ff²)				
Height (ft)	Velocity P	Velocity Pressure q _z						SCL				
	(II)	(lb/ft²)			0)6	3Cp), Wind Pt	q(GC _p), Wind Perpendicular to North/South Wall	o North/South	l Wall			q _I (GC _{pl}), Conservative
	CCL	MWFRS	Wink	Windward	Lee	Leeward	ō	Side		Roof		
			Zone 4	Zone 5	Zone 4	Zone 5	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	
< 15	29.6	24.1	17.76	17.76								
20	29.6	26.2	17.76	17.76								
25	29.6	27.9	17.76	17.76								
30	29.6	29.6	17.76	17.76								
40	32.1	32.1	19.28	19.28								
50	34.3	34.3	20.55	20.55	20.24	A1 07	20.24	A1 07	37.60	66.00	06.30	7 6.4
60	35.9	35.9	21.57	21.57	C.07	10.1 1	C.67	10. T	00.10	66.00	00.00	±0
70	37.6	37.6	22.58	22.58								
80	39.3	39.3	23.60	23.60								
6	40.6	40.6	24.36	24.36								
100	41.9	41.9	25.12	25.12								
120	44.0	44.0	26.39	26.39								
						Design Wind	Design Wind Pressures (lb/ft ²)	1 12)				
Height (ft)	Velocity P	Velocity Pressure q _z				h		CCL				
	(II)	(lb/ff ²)			ğ	GCp), Wind F	q(GCp), Wind Perpendicular to East/West Wall	to East/West	Wall			q _I (GC _{pl}), Conservative
	ы	MWFRS	Wink	Windward	Leer	Leeward	σ	Side		Roof		
			Zone 4	Zone 5	Zone 4	Zone 5	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	
≤ 15	29.6	24.1	17.76	17.76								
20	29.6	26.2	17.76	17.76								
25	29.6	27.9	17.76	17.76								
30	29.6	29.6	17.76	17.76								
40	32.1	32.1	19.28	19.28								
50	34.3	34.3	20.55	20.55	20.24	41 07	20.24	41 07	37.60	66 00	06.30	7 6.4
60	35.9	35.9	21.57	21.57	C.07	10.1 1	C.67	10. T	00.10	66.00	00.00	±0
70	37.6	37.6	22.58	22.58								
80	39.3	39.3	23.60	23.60								
06	40.6	40.6	24.36	24.36								
100	41.9	41.9	25.12	25.12								
120	44.0	44.0	26.39	26.39								


Appendix E: Seismic Load Calculations

	Importance Category : III , ASCE 7-05 Taule 1-1 Importance Factor: 1.25 , ASCE 7-05 Table 11.5-1 Site Class : D , ASCE 7-05 \$11.4.2, 20.3.3 ; Table 20.3.1	
	*** Assume ordinary reinforced concrete shear walls a) Effective Building Weight (Wx = DL+0.25 LL) 1)Level: 1	- -
JUNANY	$DL = DL_{Slab} + DL_{dec.m} + DL_{den} + DL_{Ginder} + DL_{Globring} + DL_{envelope}$ $DL = 1675.5 + 1.62 (A_{gvoss} - A_{elspening} - A_{stair})$ $1000 + 217.6 + 74.8 + 7.2 + (\frac{1638.8 + 1183.7}{2})$ $DL = 1675.5 + 39.3 + 217.6 + 74.8 + 7.2 + 1311.25$ $DL = 3325.7 \text{ Kip}$ $LL = 2001.7 \text{ Kip}, value for Load Determination}$ $-DEAD, LTVE, RAIN section$ $in the Appendix.$ $W_{x} = 3325.7 + 0.25(2001.7)$ $W_{x} = 3826.1 \text{ Kip}$	$DL_{Bm} = \frac{W_{BDA}}{Spacing} * (A_{gross} - A_{floppning} - A_{Jbli})$ Spacing $W_{BM} = 74 \ lb/pt, W14 * 74 \ from Spot check$ $DL_{BM} = \frac{74}{(26440 - 1571 - 609)}$ 8.25 $DL_{BM} = 8.97(24260)$ $DL_{BM} = 217.6 \ K.p$ $DL_{6irder} = 76 \ lb/ft, W24 * 76 \ from Spot check$ $DL_{6irder} = 76 \ lb/ft, W24 * 76 \ from Spot check$ $DL_{6irder} = \{[31.25(2) + 33(4) + 32^{2}k] 3 + [24.25(2) + 33 + (33 - 9) + 32^{2}k + (33 - 8.5) + 33(4)]\}$ * 76 $DL_{6irder} = [680 + 304.2] * 76$ $DL_{6irder} = 74.8 \ kip$
	2) Level: 2-35 $DL = \begin{cases} 1822.6 + 1.62 (A_{gross} - A_{flopening} - A_{stair}) \\ 1000 \\ + 8.97 (A_{gross} - A_{flopening} - A_{stair}) \\ + .76 (680 + 304.2 + 29.25 + 32.76) \\ 1000 \\ + 4.1 \end{bmatrix} 4 + \left[\frac{1}{2} (1183.7) + 1194.2 \\ + 1073.7 + 1061.7 + \frac{1}{2} (1261.3) \right]$ $DL = 8706.5 + 4452.3 \\ DL = 13158.8 \\ Kip$ $LL = 2103.9(4) , value from Load Determination-in the Appendix.$ $LL = 8415.6 \\ Kip$	A gross - $A_{stopening} - A_{stoip}$ = 26440 - 293 - 609 = 25538 fx ² - DEAD , LIVE, RAIN section



Appendix F: Irregularity Analysis



	Thaison Nguyen					Irregularity Analysis	1
	*** Lateral L	oad Resisti	ng Structor	-611314-	ed to be	rigid (Concrete Shear Walls)	
			-			,	
	A. Center of M	ass and Ki	gidity				
<u> </u>	*** Assault	all latera	1 recition	lements	have a s	tiffness proportional to	
	•	tive length				F	
			-				
	Floor Type	Floor	level				
	<u>A</u>	0	1				
	В						
	C	2,3,					
ġ	a second an annual of the	Roof	al a second				
	Floor Type	Component	Area (fr2)	Conter	of Mass		
The second secon	inder type	compension		$\chi(\mu)$			
	A						
		AI	11324.15	95.31	30.38		
		Avi	-224.55	36.84	44.54		
		Av2	-223.83	94.51	41.58		
		AV3	-113.50	134.88	34.42		
		AY4	- 224.55	198.83	49.26		
	·	A2	2362.09	208.07	30.38		
		Av5 A3	-1143.33 3069.82	213.51	20.42		
		AH	1394.20	66.92	88.09		
-		A5	1115.96	91.63	84.09		
		A6	949.17	114.76	82.01		1
		A7	1115.96	137.88	84.09		
		A8	1394.00	162.58	88.09		
		A9	3069.82	202.42	89.09		
	В						
		BI	13701.04	114.76	30.38		
		BVI	- 224.55	36.84	44.54		
		BV2 BV3	-223.83	94.51	41.58		
		BVY	- 5.75	119.39	34.92	· · · · · · · · · · · · · · · · · · ·	
		BVS	-113.50	134.88	34.42		
		BV6	-224.55	198.83	49.26		
		βλ	3069.82	27.09	84.09		
	1	B3	6623.72	114.76	82.09		
		BV7	-757.99	114.76	76.48		
		ВЧ	3069.52	202.42	89.09		
	C	()	1.212				
		C1	13701.04	114.76	30.38		
		CV1 CV2	- 223.83	36.84 94.51	44.54 41.58		
		CV1	-113,50	134.88	34.42		
		CY4	-224.55	148.83	49.26		
	1						1

	naison Nguyen				trregu	clarity Analys	
		63 6	623.78 1	27.09 89.09 14.76 88.09 02.42 89.09			
	Floor Type	Global (c) X(p)[1]	ter of Ma	52			
	A B C	110.07 114.69 114.79	59.34 58.72 58.90				
		$E(x_i A_i)$	1 30,00				
ONIMA	[2] 4cm= 2	$\Sigma(A_i)$					
	Lateral Resist	ing Elements	Length	Element Cente		Global Cent	pr of Rigidity 44411 [4]
	Designation	Resisting Direction	(tx)	X (47)	4(47)	$\chi(\mu)^{(3)}$	4.(1)[4]
	AVI-XI	X	10,33	36.84	34.33	and the second second	
	AVI-YI	4	21.08	42.34	44.54		
	AV2-YI	4	27.00	10.26	41.59		
	AV2-XI	I	8.17	94.66	54.76		
	AV3-Y1	4	13.17	130.34	34.42	105.51	47.79
1	Av3-x1	x	8.41	134.88	40.07		
	AV3-42	4	13.17	139.42	54. 42		
	AV4-Y1	4	11.57	188.63	49.26		
	AV4-XI	X	20.4;	199, 17	54.76		
	$[3] x_r = \sum_{r=1}^{\infty} ($	XiLy					
	Σ	(14)					
1	14] 4. = 20	(L_2)					
	L	(-1)					
	Floor Type	Eccentric	+ ~				
		Eccentrics x ^[5]	41 [13]				
	A	4.56 1	. 55				
	B		.93				
	C	9.28 11	.10				
	[E] ~ -	~ ~					
	[5] x = 1 [6] y = 1	lem-lyl					
	107 141 - 19	fem yrl					
	×						
	×						

	Thaison Nguyen					Iri	regularity An	alysis	-
							-		
	Lateral Resisting	d	. [7]						
	Element	X	4						
	AVI-XI	-68.67							
	AYI-YI	-63.17	-3.25						
	AV2-Y1	- 15.25	-6.20						1
	Av2-x1	-10.83	6.96						
	AV3-YI	24.83	-13.38						
	AV3-X1	29.37	-7.13						
	AV3-Y1.	33.91	- 13.38						
	AV4-Y1	83.12	1.46						
	AV4-X1	93.66	6.46						
ONAMA	[7] di = Elenier					lenter of	Rigiaity		
R	$\Sigma(K_{x,i}d_{x,i}^2)$	+ Ky, i d							
	Lateral Resisting	9	Kildi	dx /[2	(Kx, i d x, i	+ Ky,idy,	·)]		
	Elements	Floor	Type : A	Floor T	PR : B	Floor Typ	e:c		
		X	4	X	4	χ.	4		
	A.VI-X1	0.003	2 0.0081	0.0065	0.0077	0.0065 0	.0078		
	AVI- XI	0.003	0.078	0.062	0.074	0.062 0	.075		
	AV2- Y1	0.009	5 0.024	0.019	0.023	0.019 0	.023		
	AV2- X1	0.001	3 0.0053	0.0026	0.0031	0.0027 0	.0032		
	AV3-Y1	0.007	5 0.0191	0.0151	0.0121	0.0153 0	.0183		
	AV3- X1	0.000	4 0.0035	0.0028	0.00 33	0. 2028 0	.0034		
	AY3-Y2	0.000	0 0.026	0.021	0.025	0.021 0	.025		
	A.V4-YI	0.022	0.057	0.045	0.054	0.045	0.054		
	AV4-XI	0.003	3 0.0083	0.0066	0.4078	0.0067 0	0.8080		
	dx = eccentric, B. Irregularity eacc, long = 0 eacc, short = 0	and Wi 15(229, 15(117,4)	nd 51)= 34. 2)= 17.	43', p 61'	er Asce	:7-05; Figu	are 6-9 cose	I.	
	Floor Level					L to Sh			
	0	62.76	Lase I , II 47.07	35.30	25.43	Case II, III 19.07	Case IV		
		121.12	90.84	68.13	49.43	37.07	27.80		
	2	124.09	93.07	69.80	51.79	38.84	29.13		
	3	131.29	98.47	73.85	55.47	41.60	31.20		
	Y Y	137.03	102.77	77.08	58.41	43.81	32.56		
	. 5	137.05	3	79.75	50.84	45.63	34.22		
		£	106.34	1	1	35.59	1		
	Roof	168.50	126.38	44.78	47.45	10.85	26.69		
	Top	29.61	22.21	16.66	14.47	10.85	0117		
									\rightarrow
	1								

	Thaison Nguyen				Th	regularit	v Ahalys	- 13
			1		101		1	
	Floor Level		Mass	Kip-+	τ ^[8]		4	
		Wind 1 to	Long Side	e Wind		ot Side	-	
		Case II	Lase I			se IV	-	
	0	1215.32	911.49			8.96		
		2345.43	1759.07	489.73	36	7.29	1	
	2	2402.94	1802.21	513.11	38	4.83		
	3	2542.37	1906.77		41	2.18		
	4	2653.52	1990.14			4.02		
	5	2745.50	2059.12		45	2.08	1	
	Roofl	3262.92	2447.19		35	2.58		
	LTOP	\$73.38	430.04	143.36	10	7.52	1	
CONSIMP	[8] MALL , +	on following			on each	latenal	resist	n aj
	clowent p							-
	Marimum	Wind Base St	have it in	alament A	vi-ki			
		Nind Base St				1		
		Wenturning m						
		, see a second se			or the po			
	t) Story Drift *** Assus		remains	clastic , fo	r drift (alculatio	ns .	
	*** A5544	nie concrete retion confeata						
	*** Assur *** Defle effe	nie concrete retion confeata	tions don'	t consider	creep of			N.
	*** Assur *** Defle effe	nie Concrete retion coleain rets	tions don'	t consider	creep of			
	*** Assur *** Defle effe	nie concrete ection conjecta rets re only 25	rious don 70 4/Ig	is effectiv	ereep of	other is		
	*** Assur *** Defle *** Assur	ale concrete retion concordance rets ne only 25"	rious don 70 4/Ig	is effectiv	creep of	other is		
	*** Assur *** Defle *** Assur Lateral Res	nie concrete ection conjecta rets re only 25	rious don 70 4/Ig	is effective Pmax-w	creep or e level (kip)	other is	ng tern	Тор 3,05
	*** Assum *** Defle *** Assum Lateral Re: Member	ale concrete retion conjecta ne only 25 sections 087	rious don 70 4/ Ig	is effective Pmax-w 2 3	creep or e level (kip)	other is	Roof 1	Тор
	*** Assun *** Defle *** Assun Lateral Res Member Avi-xi	nic concrete ection conjunta nets ne only 25 sisting 5.35	tious don' % 4/ Ig 0.4	2 - 3 10.90 11.68	Creep of e. .level [Kip] 4 12.30 49.43	5 12.81	Roofi 9.99	Тор 3.05
	*** Assan *** Defle *** Assan Lateral Res Member Avi-xi Avi-yi	nic concrete ection conjunta ine to ine only 25" sisting 0°1 5.35 21-15	rious don 75 4/ Ig 10.41 43.63	2 5 10.90 11.68 14.76 47.36	Creep of e. .level [Kip] 4 12.30 49.43	5 12.81 51.15	Roof 1 9.99 60.79	Top 3,05 9.10
	*** Assum *** Defle *** Assum Lateral Re: Member Avi-xi Avi-yi	nic concrete ection conjunta ine to only 25" sisting 0°7 5.35 21.15 20.28		2 5 10.90 11.68 44.76 43.32	e. .level (Kip) 4 12.30 49.43 45.63 10.27	5 12.81 51.15 47.21	Roof1 9.99 60.79 56.11	Top 3,05 9.10 9.86
	*** Assum *** Defle *** Assum Lateral Re: Member Avi-xi Avi-yi Avi-yi Avi-xi	ale concrete ection contrata ine to sisting 5.35 21.15 20.28 4.47	-1 10.41 10.41 13.63 140.31 8.59	2 3 10.90 11.68 44.76 47.36 41.32 43.72 9.10 9.75	e. .level.[kip] 4 12.30 49.43 45.63 10.27	5 12.81 51.15 47.21 10.69	Roof 1 9.99 60.79 56.11 234	Top 3,05 9.10 9.86 2.54
	*** Assuu *** Defle *** Assuu Lateral Re: Member Avi-xi Avi-yi Avi-yi Avi-xi Avi-yi Avi-yi	ale concrete ection contrata ine to sisting 5.35 21.15 20.28 4.47 9.(3	-1 10.41 10.41 43.63 40.31 8.69 16.69 8.62	2 Consider is effective 2 3 10.90 11.68 44.76 47.36 41.32 43.72 9.10 9.75 17.08 18.07	e. .level. [Kip] 4 (2.30 49.43 45.63 10.27 12.86	5 12.81 51.15 47.21 10.69 19.51	Roof 1 9.99 60.79 56.11 234 23.19	Top 3,05 9,10 9,86 2,54 4,08
	*** Assum *** Defle *** Assum Lateral Re: Member Avi-xi Avi-yi Avi-yi Avi-yi Avi-yi Avi-yi Avi-xi Avi-yi Avi-xi	ale concrete ection contrata ine to sisting Sisting Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 0 Sisting 1 20.28 4.47 9.(3 4.43	-1 10.41 10.41 43.63 40.31 8.69 16.69 8.62	2 3 10.90 11.68 44.76 47.36 41.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67	e. .level. [Kip] 4 (2.30 49.43 45.63 10.27 12.86 10.19 15.09	5 12.81 51.15 47.21 10.69 19.51 10.61	Roof 1 9,99 60.79 56.11 234 23.19 2.27	Top 3,05 9,10 9,86 2,54 4,08 2,52
	*** Assuu *** Defle e+fe *** Assuu Lateral Re: Member Av1-x1 Av2-v1 Av2-v1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x2	ale concrete ection concrete rets e only 25 5.35 21.15 20.28 4.47 9.63 4.43 8.95	-1 10.41 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92	2 3 10.90 11.65 41.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33	creep of e. (2,30 49.43 45.63 10.27 18.86 10.19 18.09 13.34	5 12.81 51.15 47.21 10.69 19.51 10.61 18.72	Roof 1 9,99 60,79 56,11 8,34 23,19 8,27 22,25	Top 3.05 9.10 9.86 2.54 4.08 2.52 3.91
	*** Assau *** Defle e+fe *** Assau Loteral Re: Member Av1-x1 Av2-Y1 Av2-Y1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x1	ale concrete ection conjunta ine ts e only 25 5:55 21-15 20.28 4.47 9.63 4.43 8.95 7.10	-1 10.41 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92 21.71	2 Consider is effective Pmax-w 2 3 10.90 11.68 94.76 97.36 91.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33 11.68 11.82	Creep of e. (4,30 49.43 45.63 10.27 12.86 10.19 15.09 12.34	5 12.81 51.15 19.51 10.69 19.51 10.61 18.72 12.77	Roof 1 9,99 60.79 54.11 23,19 23,19 2,27 22,25 15.18	Top 3,05 9.10 9.86 2.54 4.08 2.52 3.91 2.67
	*** Assum *** Defle e+fe *** Assum Lateral Re: Member Av1-x1 Av2-Y1 Av2-Y1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x2 Av4-Y1 Av4-x1 [9] Lateral	ale concrete ection coloria is the only 25" 5.35 21.15 20.28 4.43 8.95 7.10 11.18 10ad goes to	Tions don' 70 4/ Ig 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92 21.71 ground.	2 Consider is effective 2 3 10.90 11.68 94.76 97.36 91.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33 11.68 11.82 22.75 24.37	e. .level. [.kip] 4 (2.30 49.43 45.63 10.27 12.86 10.19 15.09 (2.34 25.66	5 12.81 51.15 47.21 10.69 19.51 10.61 18.72 12.77 26.73	Roof 1 9,99 60.79 54.11 23,19 23,19 2,27 22,25 15.18	Top 3,05 9.10 9.86 2.54 4.08 2.52 3.91 2.67
	*** Assum *** Defle e+fe *** Assum Lateral Re: Member Av1-x1 Av2-Y1 Av2-Y1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x2 Av4-Y1 Av4-x1 [9] Lateral	ale concrete ection coloria is the only 25" 5.35 21.15 20.28 4.43 8.95 7.10 11.18 10ad goes to	Tions don' 70 4/ Ig 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92 21.71 ground.	2 Consider is effective 2 3 10.90 11.68 94.76 97.36 91.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33 11.68 11.82 22.75 24.37	Creep of e (2,30 49.43 45.63 10.27 12.56 10.19 15.09 12.34 12.56 10.34 25.66	5 12.81 51.15 47.21 10.69 19.51 10.61 18.72 12.77 26.73	Roof) 9,99 60.79 56.11 8.34 23.19 8.27 22.25 15.18 20.84	Top 3.05 9.10 9.86 2.54 4.08 2.52 3.91 2.67 6.36
	*** Assum *** Defle e+fe *** Assum Lateral Re: Member Av1-x1 Av2-Y1 Av2-Y1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x2 Av4-Y1 Av4-x1 [9] Lateral	ale concrete ection coloria is the only 25" 5.35 21.15 20.28 4.43 8.95 7.10 11.18 10ad goes to	Tions don' 70 4/ Ig 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92 21.71 ground.	2 Consider is effective 2 3 10.90 11.68 94.76 97.36 91.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33 11.68 11.82 22.75 24.37	Creep of e (2,30 49.43 45.63 10.27 12.86 10.19 15.09 13.34 25.66 Δ = C =	5 12.81 51.15 19.51 10.69 19.51 10.61 18.72 12.77 26.73 P.L ³ /C Constant	Reof 1 9,99 60.79 54.11 23,19 22,25 15.18 20.84	Top 3,05 9.10 9.86 2.54 4.08 2.52 3.91 2.67
	*** Assum *** Defle e+fe *** Assum Lateral Re: Member Av1-x1 Av2-Y1 Av2-Y1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x2 Av4-Y1 Av4-x1 [9] Lateral	ale concrete ection conjunta ine ts e only 25" 5:5 ting 0.67 20.28 4.43 8.95 7.10 11.18	Tions don' 70 4/ Ig 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92 21.71 ground.	2 Consider is effective 2 3 10.90 11.68 94.76 97.36 91.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33 11.68 11.82 22.75 24.37	Creep of e (2,30 49.43 45.63 10.27 12.86 10.19 15.09 13.34 25.66 Δ = C =	5 12.81 51.15 47.21 10.69 19.51 10.61 18.72 12.77 26.73	Reof 1 9,99 60.79 54.11 23,19 22,25 15.18 20.84	Top 3.05 9.10 9.86 2.54 4.08 2.52 3.91 2.67 6.36
	*** Assum *** Defle e+fe *** Assum Lateral Re: Member Av1-x1 Av2-Y1 Av2-Y1 Av3-x1 Av3-x1 Av3-x1 Av3-x1 Av3-x2 Av4-Y1 Av4-x1 [9] Lateral	ale concrete ection coloria is the only 25" 5.35 21.15 20.28 4.43 8.95 7.10 11.18 10ad goes to	Tions don' 70 4/ Ig 10.41 43.63 40.31 8.69 16.69 8.62 16.02 10.92 21.71 ground.	2 Consider is effective 2 3 10.90 11.68 94.76 97.36 91.32 43.72 9.10 9.75 17.08 18.07 9.03 9.67 16.38 12.33 11.68 11.82 22.75 24.37	Creep of e (2,30 49.43 45.63 10.27 12.86 10.19 15.09 13.34 25.66 Δ = C =	5 12.81 51.15 47.21 10.69 19.51 10.61 18.72 12.77 26.73 P.L ³ /C Constant	Reof 1 9,99 60.79 54.11 23,19 22,25 15.18 20.84	Top 3.05 9.10 9.86 2.54 4.08 2.52 3.91 2.67 6.36

				W	Wind Perpendicular to Short Side	ular to Short S	Side			
	Floor Level			Wind Load E	Direct Compor	ent in Latera	Wind Load Direct Component in Lateral Resisting Elements (Kip)	ements (Kip)		
AV4-X1		AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0.00	0	5.55	00.0	0.00	4.39	00.0	4.52	0.00	00.0	10.97
0.00	-	10.79	00.0	00.0	8.53	00.0	8.79	00.0	00'0	21.32
0.00	2	11.31	00.0	0.00	8.94	00.0	9.21	0.00	00.0	22.34
0.00	en	12.11	00.0	0.00	9.57	00.0	9.80	0.00	00.0	23.93
0.00	4	12.75	00.0	0.00	10.08	0.00	10.38	0.00	0.00	25.19
0.00	5	13.28	00.0	0.00	10.50	00.0	10.81	0.00	00.0	26.24
0.00	Roof 1	10.36	00.0	0.00	8.19	00.0	8.43	0.00	00.0	20.47
0.00	Top	3.16	00.0	0.00	2.50	0.00	2.57	0.00	0.00	6.24
				Wi	Wind Perpendicular to Short Si	ular to Short S	Side			
	Floor Level			Wind Load T	orsion Compo	nent in Later	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	lements (Kip)		
AV4-X1		AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0.21	0	-0.21	1.98	0.61	0.08	-0.49	-0.09	-0.66	-1.44	0.21
0.80	-	-0.38	3.63	1.12	0.16	-0.89	-0.16	-1.22	-2.85	0.39
0.83	2	-0.40	3.87	1.20	0.17	-0.95	-0.17	-1.30	-2.82	0.41
0.88	m	-0.43	4.14	1.28	0.18	-1.02	-0.19	-1.39	-3.02	0.44
0.91	4	-0.46	4.36	1.35	0.19	-1.07	-0.20	-1.46	-3.18	0.47
0.94	5	-0.47	4.54	1.41	0.19	-1.12	-0.20	-1.52	-3.31	0.49
1.12	Roof 1	-0.37	3.54	1.10	0.15	-0.87	-0.16	-1.19	-2.58	0.38
0.20	Top	-0.11	1.08	0.33	0.05	-0.27	-0.05	-0.36	-0.79	0.12
				W	Wind Perpendicular to Short	ular to Short S	Side			
	Floor Level			Total	Wind Load in	Lateral Resis	Total Wind Load in Lateral Resisting Elements (Kip)	(Kip)		
AV4-X1		AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0.21	0	5.35	1.98	0.61	4.47	-0.49	4.43	-0.66	-1.44	11.18
0.80	-	10.41	3.63	1.12	8.69	-0.89	8.82	-1.22	-2.85	21.71
0.83	2	10.90	3.87	1.20	9.10	-0.95	9.03	-1.30	-2.82	22.75
0.88	m	11.68	4.14	1.28	9.75	-1.02	9.67	-1.39	-3.02	24.37
0.91	4	12.30	4.36	1.35	10.27	-1.07	10.19	-1.46	-3.18	25.08
0.94	2	12.81	4.54	1.41	10.69	-1.12	10.61	-1.52	-3.31	26.73
1.12	Roof 1	8.68	3.54	1.10	8.34	-0.87	8.27	-1.19	-2.58	20.84
0.20	Top	3.05	1.08	0.33	2.54	-0.27	2.52	-0.36	-0.79	6.36
	l									

3	0.00	32.15	41.18	0.00	20.08	0.00	20.08	17.79	0.00
4	0.00	33.55	42.98	00.0	20.96	0.00	20.96	18.57	00.0
2	0.00	34.72	44.47	00.0	21.69	0.00	21.69	19.22	00.0
Roof 1	0.00	41.26	52.85	00.0	25.77	0.00	25.77	22.84	0.00
Top	0.00	7.25	9.29	00.0	4.53	0:00	4.53	4.01	00.0
			Ŵ	nd Perpendici	Wind Perpendicular to Long Side	ide			
Floor Level			Wind Load To	rsion Compo	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	al Resisting E	lements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.20	1.83	0.0	0.08	-0.47	-0.09	-0.65	-1.40	0.21
	-0.78	7.48	2.31	0.32	-1.84	-0.34	-2.51	-5.45	0.80
2	-0.81	7.75	2.40	0.33	-1.90	-0.35	-2.60	-5.84	0.83
e	-0.86	8.20	2.53	0.35	-2.01	-0.37	-2.75	-5.97	0.88
4	-0.89	8.56	2.65	0.37	-2.10	-0.39	-2.87	-6.23	0.91
5	-0.92	8.85	2.74	0.38	-2.17	-0.40	-2.97	-6.45	0.94
Roof 1	-1.10	10.52	3.25	0.45	-2.58	-0.47	-3.53	-7.88	1.12
Top	-0.19	1.85	0.57	0.08	-0.45	-0.08	-0.62	-1.35	0.20
				6					
			E.	na rerpenaio.	wind herpendicular to Long Side	ap			
Floor Level			Total	Wind Load in	Total Wind Load in Lateral Resisting Elements (Kip)	ting Elements	(Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.20	17.29	20.28	0.08	9.13	-0.09	3.95	7.10	0.21
	-0.78	37 14	40.31	0.32	16.60	-0.34	18.02	10.97	0.80

AV4-Y1

AV3-Y

AV2->

AV1-Y

AV1-X1 0.0

Floor Level

Floor Level			Total	Wind Load in	Total Wind Load in Lateral Resisting Elements (Kip)	ting Elements	(Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.20	17.29	20.28	0.08	9.13	-0.09	8.95	7.10	0.21
۲	-0.78	37.14	40.31	0.32	16.69	-0.34	16.02	10.97	0.80
2	-0.81	38.13	41.32	0.33	17.08	-0.35	16.38	11.18	0.83
e	-0.86	40.35	43.72	0.35	18.07	-0.37	17.33	11.82	0.88
4	-0.89	42.11	45.83	0.37	18.86	-0.39	18.09	12.34	0.91
5	-0.92	43.57	47.21	0.38	19.51	-0.40	18.72	12.77	0.94
Roof 1	-1.10	51.78	58.11	0.45	23.19	-0.47	22.25	15.18	1.12
Top	-0.19	9.10	98'6	80.0	4.08	90.0-	3.91	2.67	0.20

Table AF.1, Wind Case I

			Ŵ	Wind Perpendicular to Long Side	ular to Long S	ide						
Floor Level			Wind Load D	Wind Load Direct Component in Lateral Resisting Elements (Kip)	ient in Latera	I Resisting El	ements (Kip)			Floor Level		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1		AV1-X1	A
0	0.00	11.53	14.76	0.00	7.20	0.00	7.20	6.38	0.00	0	4.16	
-	0.00	22.24	28.49	0.00	13.80	0.00	13.90	12.31	0.00	-	8.10	
2	0.00	22.79	29.19	0.00	14.24	0.00	14.24	12.61	0.00	2	8.48	
9	0.00	24.11	30.89	0:00	15.08	0.00	15.08	13.35	0.00	m	8.08	<u> </u>
4	0.00	25.17	32.24	0.00	15.72	0.00	15.72	13.93	0.00	4	9.57	
e G	0.00	26.04	33.35	0.00	16.27	0.00	16.27	14.41	0.00	5	9.96	
Roof 1	0.00	30.95	39.64	00:0	19.33	0.00	19.33	17.13	0.00	Roof 1	17.7	
Top	0.00	5.44	6.97	0.00	3.40	0.0	3.40	3.01	0.00	Top	2.37	\vdash
			W	Wind Perpendioular to Long Side	ular to Long S	ide						
Floor Level			Wind Load To	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	nent in Later	al Resisting E	lements (Kip)			Floor Level		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	CV-2VA	AV4-Y1	AV4-X1		AV1-X1	A

					(day) supported Remote the state of the stat	Builden	(day) announced		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.15	1.44	0.45	0.06	-0.35	-0.07	-0.48	-1.05	0.15
-	-0.59	5.61	1.74	0.24	-1.38	-0.25	-1.88	4.09	09.0
2	-0.61	5.81	1.80	0.25	-1.43	-0.26	-1.85	4.23	0.62
3	-0.64	6.15	1.90	0.26	-1.51	-0.28	-2.06	4.48	0.66
4	-0.67	6.42	1.98	0.27	-1.58	-0.29	-2.15	4.87	0.68
e G	-0.69	6.64	2.05	0.28	-1.63	-0.30	-2.23	4.83	0.71
Roof 1	-0.82	7.89	2.44	0.34	-1.94	-0.36	-2.85	-5.75	0.84
Top	-0.14	1.39	0.43	0.06	-0.34	-0.06	-0.46	-1.01	0.15
			Wind Pe	rpendioular to	Wind Perpendioular to Long and Short Side	iort Side			
Floor Level			Total V	Wind Load in	Total Wind Load in Lateral Resisting Elements (Kip)	ting Elements	s (Kip)		
	AV4_X4	AV14_V14	AV7-V4	5V/2/VA	AV2-V4	AV2.Y1	CV-2/14	AVA.V1	AVA.Y1

_		_	-	-	_	-	-	-	-
	AV4-X1	8.54	16.88	17.68	18.93	19.93	20.75	16.48	4.92
	AV4-Y1	4.25	6.24	6.27	6.61	6.87	7.09	9.45	1.41
(Kip)	AV3-Y2	6.22	11.10	11.31	11.96	12.47	12.90	15.79	2.66
Lotal Wind Load In Lateral Resisting Elements (Kip)	AV3-X1	3.26	6.21	6.51	6.98	7.35	7.66	5.85	1.83
Lateral Resist	AV3-Y1	6.48	11.85	12.10	12.79	13.34	13.80	16.74	2.86
VING LOAG IN I	AV2-X1	3.42	6.75	7.08	7.57	7.87	8.30	6.59	1.97
I OTAI V	AV2-Y1	15.67	31.07	31.89	33.75	35.23	36.46	42.90	7.85
	AV1-Y1	14.45	30.58	31.50	33.37	34.86	36.09	41.49	7.64
	AV1-X1	3.86	7.22	7.57	8.12	8.55	8.91	6.67	2.14
Floor Level		0	-	2	3	4	£	Roof 1	Top

Ξ
Case
Wind
AF.2,
Table

			W	nd Perpendio	Wind Perpendicular to Short Side	Side	
Floor Level			Wind Load E	Direct Comport	Wind Load Direct Component in Lateral Resisting Elements	al Resisting El	ements (
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-)
0	4.16	00.0	00.0	3.29	0.00	3.39	00.0
-	8.10	0.00	00.0	6.40	0.00	6.59	00.0
2	8.48	0.00	00.0	6.70	0.00	6.90	0.0
8	9.08	00.0	0.00	7.18	0.00	7.39	00.0
4	9.57	00.0	00.0	7.56	0.00	97.7	00'0
5	96.6	0.00	00.0	7.87	0.00	8.11	00.0
Roof 1	77.7	0.00	00.0	6.14	0.00	6.33	00.0
Top	2.37	0.00	0.00	1.87	0.00	1.93	00.0

16.75 17.94 18.90 19.68 15.35 4.68

AV4-Y1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15.99

		W	Wind Perpendicular to Short Side	ular to Short (side			
		Wind Load T	orsion Compo	nent in Later	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	lements (Kip)		
A	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
-	1.48	0.46	0.06	-0.36	-0.07	-0.50	-1.08	0.16
2	2.73	0.84	0.12	-0.67	-0.12	-0.91	-1.99	0.29
2	2.90	0.90	0.12	-0.71	-0.13	-0.97	-2.11	0.31
e,	3.11	0.96	0.13	-0.76	-0.14	-1.04	-2.26	0.33
e,	3.27	1.01	0.14	-0.80	-0.15	-1.10	-2.38	0.35
è	3.41	1.05	0.15	-0.84	-0.15	-1.14	-2.48	0.36
5	2.66	0.82	0.11	-0.65	-0.12	-0.89	-1.94	0.28
0	0.81	0.25	0.03	-0.20	-0.04	-0.27	-0.59	0.09

			W	nd Perpendic	Wind Perpendicular to Short Side	Side			
Floor Level			Wind Load E	Direct Compor	nent in Laters	Wind Load Direct Component in Lateral Resisting Elements (Kip)	ements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	4.16	0.00	00.0	3.29	0.00	3.39	0.00	0.0	8.23
-	8.10	00.0	0.00	6.40	0.00	6.59	00.0	00.0	15.99
2	8.48	00.0	00.0	6.70	0.00	6.90	00.0	0.00	16.75
m	9.08	0.00	00.0	7.18	0.00	7.39	0.00	0.00	17.94
4	9.57	00.0	00.0	7.56	0.00	7.79	00.0	00.0	18.90
ŝ	96.6	0.00	00.0	7.87	0.00	8.11	0.00	0.0	19.68
Roof 1	77.7	00.0	00.0	6.14	0.00	6.33	0.00	0.0	15.35
Top	2.37	0.00	0.00	1.87	0.00	1.93	0.00	0.00	4.68
			W	nd Perpendic	Wind Perpendicular to Short Side	Side			
Floor Level			Wind Load To	orsion Compo	onent in Later	ral Resisting E	Wind Load Torsion Component in Lateral Resisting Elements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-0.33	3.18	0.98	0.14	-0.78	-0.14	-1.07	-2.31	0.34
÷	-0.63	6.02	1.86	0.26	-1.48	-0.27	-2.02	4.38	0.64
2	-0.68	6.35	1.96	0.27	-1.58	-0.29	-2.13	4.83	0.68
'n	-0.71	6.80	2.10	0.29	-1.67	-0.31	-2.28	4.96	0.73
4	-0.75	21.17	2.22	0.31	-1.78	-0.32	-2.40	-5.22	0.76
9	-0.78	7.46	2.31	0.32	-1.83	-0.34	-2.50	-5.44	0.80
Roof 1	-0.61	5.82	1.80	0.25	-1.43	-0.26	-1.95	4.24	0.62
Top	-0.19	0.81	0.25	0.03	-0.20	-0.04	-0.27	-0.59	0.09
			W	nd Perpendio	Wind Perpendicular to Short Side	Side			
Floor Level			Total	Wind Load ir	n Lateral Resi	Total Wind Load in Lateral Resisting Elements (Kip)	is (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	3.83	3.18	0.98	3.43	-0.78	3.25	-1.07	-2.31	8.57

Top	-0.19	0.81	0.25	0.03	-0.20	-0.04	-0.27	-0.59	0.09
			Wi	Wind Perpendicular to Short Side	ular to Short S	Side			
Floor Level			Total	Wind Load in	Lateral Resi	Total Wind Load in Lateral Resisting Elements (Kip)	s (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	3.83	3.18	0.98	3.43	-0.78	3.25	-1.07	-2.31	8.57
-	7.47	6.02	1.86	6.65	-1.48	6.32	-2.02	4.38	16.63
5	7.82	6.35	1.96	6.97	-1.56	6.82	-2.13	4.83	17.43
en	8.37	6.80	2.10	7.47	-1.67	7.09	-2.28	4.96	18.67
4	8.82	71.17	2.22	7.87	-1.76	7.46	-2.40	-5.22	19.66
2	9.18	7.46	2.31	8.19	-1.83	77.7	-2.50	-5.44	20.48
Roof 1	7.16	5.82	1.80	6.39	-1.43	6.06	-1.95	4.24	15.97
Top	2.18	0.81	0.25	1.91	-0.20	1.89	-0.27	-0.59	4.77

Case II
Ũ
Wind
AF.3,
Table

0.15

2.00

2.93

-0.08

3.06

0.08

200

0.55

8

			Ŵ	nd Perpendici	Wind Perpendicular to Long Side	ide			
Floor Level			Wind Load D	irect Compor	Wind Load Direct Component in Lateral Resisting Elements (Kip)	I Resisting El	ements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	0.00	11.53	14.76	0.00	7.20	0.00	7.20	6.38	0.00
-	0.00	22.24	28.49	0.00	13.90	0.00	13.90	12.31	00.0
2	0.00	22.79	29.19	0:00	14.24	0.00	14.24	12.61	0.0
e	0.00	24.11	30.89	0.00	15.08	0.00	15.06	13.35	0.00
4	0.00	25.17	32.24	00.0	15.72	00.0	15.72	13.93	0.0
5	00.0	26.04	33.35	0.00	16.27	0.00	16.27	14.41	0.00
Roof 1	00:0	30.95	39.64	0:00	19.33	0.00	19.33	17.13	0.0
Top	0.00	5.44	6.97	0:00	3.40	0.00	3.40	3.01	0.00
			Wi	nd Perpendict	Wind Perpendicular to Long Side	ide			
Floor Level			Wind Load To	orsion Compo.	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	al Resisting E	lements (Kip)		
	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
0	-1.00	9.62	2.97	0.41	-2.36	-0.43	-3.23	-7.01	1.03
÷	-2.23	21.39	6.61	0.91	-5.25	-0.96	21.17	-15.58	2.28

0.15			AV4-X1	1.03	2.28	2.35	2.48	2.59	2.68	3.19
-1.01			AV4-Y1	-0.63	-3.27	-3.39	-3.59	-3.74	-3.87	4 80
-0.46		(Kip)	AV3-Y2	3.97	6.72	6.87	7.26	7.58	7.84	9.32
-0.08	de	ing Elements	AV3-X1	-0.43	-0.96	-0.89	-1.05	-1.09	-1.13	-134
-0.34	lar to Long Si	Lateral Resist	AV3-Y1	4.84	8.64	8.84	9.35	9.76	10.10	12 00
0.08	Wind Perpendicular to Long Side	Total Wind Load in Lateral Resisting Elements (Kip)	AV2-X1	0.41	0.91	0.94	0.99	1.04	1.07	1 27
0.43	Win	Total V	AV2-Y1	17.74	35.11	35.89	38.07	39.74	41.12	48.87
1.29			AV1-Y1	21.15	43.83	44.76	47.36	48.43	51.15	60 79
-0.55			AV1-X1	-1.00	-2.23	-2.30	-2.43	-2.53	-2.62	-3.12
Top		Floor Level		0	-	2	3	4	2	Roof 1

											_										
		AV4-X1	6.17	11.99	12.57	13.46	14.17	14.76	11.51	3.51			AV4-X1	0.25	0.48	0.51	0.54	0.57	0.60	0.47	0.06
		AV4-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			AV4-Y1	-1.74	-3.29	-3.47	-3.72	-3.91	4.08	-3.18	-0.44
	ments (Kip)	AV3-Y2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		ments (Kip)	AV3-Y2	-0.80	-1.51	-1.60	-1.71	-1.80	-1.88	-1.46	-0.20
de de	Resisting Eler	AV3-X1	2.54	4.84	5.18	5.55	5.84	6.08	4.74	1.45	de de	Resisting Ele	AV3-X1	-0.11	-0.20	-0.21	-0.23	-0.24	-0.25	-0.20	-0.03
ar to Short Sid	ent in Lateral	AV3-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ar to Short Sid	ent in Lateral	AV3-Y1	-0.58	-1.11	-1.17	-1.25	-1.32	-1.37	-1.07	-0.15
Wind Perpendicular to Short Side	rect Compone	AV2-X1	2.47	4.80	5.03	5.38	5.67	5.91	4.61	1.40	Wind Perpendicular to Short Side	rsion Compon	AV2-X1	0.10	0.19	0.20	0.22	0.23	0.24	0.19	0.03
Win	Wind Load Direct Component in Lateral Resisting Elements (Kip)	AV2-Y1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Win	Wind Load Torsion Component in Lateral Resisting Elements (Kip)	AV2-Y1	0.74	1.40	1.47	1.58	1.66	1.73	1.35	0.19
		AV1-Y1	0.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00		V	AV1-Y1	2.38	4.52	4.76	5.10	5.37	5.60	4.37	0.61
		AV1-X1	3.12	6.07	6.36	6.81	71.7	7.47	5.83	1.78			AV1-X1	-0.25	-0.47	-0.50	-0.53	-0.58	-0.58	-0.46	-0.14
	a					en	4	5	of 1	Top		Floor Level	I	0	-	2	с С	4	5	Roof 1	Top
	Floor Level		0	-	5				Roof	F		Floo								ŭ	
	Floor Lew		0	-	~	.,			Ro	F		Floor								R	
	Floor Lew	AV4-X1	0.00	0:00	0.00	0:00	00.0	0.00	0.00 Ro	0:00		Floor	AV4-X1	0.77	1.71	1.76	1.86	1.94	2.01	2.39 Ro	0.11
	Floor Lew	AV4-Y1 AV4-X1		9.23 0.00 1								Floor	AV4-Y1 AV4-X1	-5.25 0.77	-11.68 1.71	-12.00 1.76	-12.70 1.86	-13.25 1.94	-13.71 2.01		
			0:00		0.00	0.00	0.00	00.0	0:00	00:0										2.39	0.11
a		AV4-Y1	4.78 0.00	9.23	9.46 0.00	10.01 0.00	10.45 0.00	10.81 0.00	12.85 0.00	2.26 0.00	e e	esisting Elements (Kip)	AV4-Y1	-5.25	-11.68	-12.00	-12.70	-13.25	-13.71	-16.30 2.39	-0.76 0.11
ar to Long Side		AV3-Y2 AV4-Y1	5.40 4.78 0.00	10.42 9.23	10.68 9.46 0.00	11.30 10.01 0.00	11.79 10.45 0.00	12.20 10.81 0.00	14.50 12.85 0.00	2.55 2.26 0.00	ar to Long Side	esisting Elements (Kip)	AV3-Y2 AV4-Y1	-2.42 -5.25	-5.38 -11.68	-5.53 -12.00	-5.85 -12.70 1	-6.10 -13.25	-6.32 -13.71	-7.51 -16.30 2.39	-0.35 -0.76 0.11
d Perpendicular to Long Side		I AV3-X1 AV3-Y2 AV4-Y1	0.00 5.40 4.78 0.00	0.00 10.42 9.23	0.00 10.68 9.46 0.00	0.00 11.30 10.01 0.00	0.00 11.79 10.45 0.00	0.00 12.20 10.81 0.00	0.00 14.50 12.85 0.00	0.00 2.55 2.26 0.00	d Perpendicular to Long Side	esisting Elements (Kip)	1 AV3-X1 AV3-Y2 AV4-Y1	-0.32 -2.42 -5.25	-0.72 -5.38 -11.68	-0.74 -5.53 -12.00	-0.78 -5.85 -12.70 1	-0.82 -6.10 -13.25	-0.85 -6.32 -13.71	-1.01 -7.51 -16.30 2.39	-0.05 -0.35 -0.78 0.11
Wind Perpendioular to Long Side	Wind Load Direct Component in Lateral Resisting Elements (Kip)	AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	5.40 0.00 5.40 4.78 0.00	10.42 0.00 10.42 9.23	10.68 0.00 10.68 9.46 0.00	11.30 0.00 11.30 10.01 0.00	11.79 0.00 11.79 10.45 0.00	12.20 0.00 12.20 10.81 0.00	14.50 0.00 14.50 12.85 0.00	2.55 0.00 2.55 2.26 0.00	Wind Perpendicular to Long Side	esisting Elements (Kip)	AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	-1.77 -0.32 -2.42 -5.25	-3.94 -0.72 -5.38 -11.68	4.05 -0.74 -5.53 -12.00	4.28 -0.78 -5.85 -12.70 1	4.47 -0.82 -6.10 -13.25	4.62 -0.85 -6.32 -13.71	-5.50 -1.01 -7.51 -16.30 2.39	-0.28 -0.05 -0.35 -0.78 0.11
Wind Perpendicular to Long Side		AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	0.00 5.40 0.00 5.40 4.78 0.00	0.00 10.42 0.00 10.42 9.23	0.00 10.68 0.00 10.68 9.46 0.00	0.00 11.30 0.00 11.30 10.01 0.00	0.00 11.79 0.00 11.79 10.45 0.00	0.00 12.20 0.00 12.20 10.81 0.00	0.00 14.50 0.00 14.50 12.85 0.00	0.00 2.55 0.00 2.55 2.26 0.00	Wind Perpendicular to Long Side		AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	0.31 -1.77 -0.32 -2.42 -5.25	0.69 -3.94 -0.72 -5.38 -11.68	0.70 -4.05 -0.74 -5.53 -12.00	0.74 -4.28 -0.78 -5.85 -12.70 1	0.78 4.47 -0.82 -6.10 -13.25	0.80 4.62 -0.85 -6.32 -13.71	0.96 -5.50 -1.01 -7.51 -16.30 2.39	0.04 -0.26 -0.05 -0.35 -0.76 0.11
Wind Perpendicular to Long Side		AV2-Y1 AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	11.07 0.00 5.40 0.00 5.40 4.78 0.00	21.37 0.00 10.42 0.00 10.42 9.23	21.89 0.00 10.68 0.00 10.68 9.46 0.00	23.16 0.00 11.30 0.00 11.30 10.01 0.00	24.18 0.00 11.79 0.00 11.79 10.45 0.00	25.02 0.00 12.20 0.00 12.20 10.81 0.00	29.73 0.00 14.50 0.00 14.50 12.85 0.00	5.22 0.00 2.55 0.00 2.55 2.26 0.00	Wind Perpendicular to Long Side	esisting Elements (Kip)	AV2-Y1 AV2-X1 AV3-Y1 AV3-X1 AV3-Y2 AV4-Y1	2.23 0.31 -1.77 -0.32 -2.42 -5.25	4.96 0.69 -3.94 -0.72 -5.38 -11.68	5.10 0.70 -4.05 -0.74 -5.53 -12.00	5.39 0.74 -4.28 -0.78 -5.85 -12.70 1	5.63 0.78 -4.47 -0.82 -6.10 -13.25	5.82 0.80 -4.62 -0.85 -6.32 -13.71	6.92 0.96 -5.50 -1.01 -7.51 -16.30 2.39	0.32 0.04 -0.28 -0.05 -0.35 -0.78 0.11

Floor Level 0 + 3 5 Roof 1 Top

4

Floor Level 0

16.04 4.06 0.06 -3.94 -0.72 -5.38 -11.68 17.44 5.30 0.74 -4.25 -0.73 -5.53 -12.70 18.20 5.63 0.74 -4.23 -0.73 -5.53 -12.70 17.44 5.30 0.74 -4.23 -0.73 -5.55 -13.71 18.20 5.63 0.74 -4.23 -0.73 -5.55 -13.71 22.38 6.22 0.66 -5.60 -1.01 -7.51 -16.30 22.38 6.22 0.04 -0.26 -0.05 -0.35 -0.76 22.38 6.20 0.04 -0.26 -0.05 -0.35 -0.76 22.38 6.22 0.04 -0.26 -0.05 -0.35 -0.76 22.33 6.22 0.04 -0.26 -0.05 -0.35 -0.76 37.24 AV2-Y1 AV2-X1 AV2-X1 AV2-X1 AV2-Y1 AV2-Y1 AV2-Y1 18.24 27.3	l									
16.48 5.10 0.70 -4.05 -0.74 -5.30 12.00 17.74 5.39 0.74 -4.28 -0.78 -6.10 -13.26 17.74 5.39 0.74 -4.28 -0.78 -6.10 -13.26 18.33 5.82 0.80 -4.62 -0.85 -6.32 -13.71 22.38 6.82 0.80 -4.62 -0.85 -6.32 -13.71 22.38 6.82 0.94 -0.26 -10.101 -7.51 -16.30 22.38 6.82 0.94 -0.26 -0.055 -6.32 -13.71 22.38 6.82 0.94 -0.26 -10.11 -7.51 -16.30 7.44 Nind Peneroticularia Long Side and Sinct -7.51 -16.30 -2.20 7 7.11 AV1-Y1 AV2-Y1 AV2-Y1 AV3-Y1 AV3-Y1 7 16.24 4.13 3.304 2.11 2.18 -2.20 7 16.25 5.37 4		-1.68	16.04	4.96	0.69	-3.94	-0.72	-5.38	-11.68	1.71
17.44 5.39 0.74 -4.23 -0.78 -5.65 -1.270 18.20 6.63 0.78 -4.77 -0.82 -0.132 -1.371 18.20 6.63 0.80 -4.67 -0.82 -0.13 -1.371 18.20 6.82 0.80 -4.67 -0.82 -0.16 -1.63 22.38 6.82 0.80 -4.67 -0.82 -0.16 -1.63 22.38 6.82 0.80 -4.67 -0.85 -0.35 -0.76 7.11 1.101 -7.51 1.630 -7.51 -16.30 -1.63 7.04 1.37 -0.26 -0.05 -0.35 -0.76 -1.63 7.04 1.47 -0.26 -0.05 -0.35 -1.61 -1.63 7.04 1.41 -0.26 5.37 4.02 -1.74 -1.74 7.41 2.71 2.83 5.46 4.23 3.56 -6.17 7.44 2.73 5.68 <td< td=""><td></td><td>-1.72</td><td>16.48</td><td>5.10</td><td>0.70</td><td>4.05</td><td>-0.74</td><td>-5.53</td><td>-12.00</td><td>1.76</td></td<>		-1.72	16.48	5.10	0.70	4.05	-0.74	-5.53	-12.00	1.76
18.20 6.63 0.76 -4.47 0.82 -6.10 -13.26 18.83 6.82 0.98 -4.62 -0.85 -6.101 -13.51 -16.30 213.98 6.82 0.94 -0.26 -1.015 -1.015 -1.016 213.9 6.82 0.094 -0.26 -0.055 -0.76 -0.76 0.06 0.32 0.04 -0.26 -0.055 -0.76 -0.76 Mud PerpendioJarta Long Side and Short - - - - - - - - - - - - - - 0.76 - <	I I	-1.82	17.44	5.39	0.74	4.28	-0.78	-5.85	-12.70	1.86
18.83 5.82 0.80 4.82 0.85 -6.32 -1.371 22.38 6.82 0.96 -5.50 -1.01 -7.51 -16.30 22.38 6.82 0.96 -5.50 -1.01 -7.51 -16.30 22.38 6.82 0.96 -5.50 -1.01 -7.51 -16.30 27.31 AV1-Y1 AV24 AV3-Y1 AV3-Y1 AV3-Y1 AV4-Y1 AV1-Y1 AV241 AV241 AV3-Y1 AV3-Y1 AV4-Y1 2.14 AV1-Y1 AV24 AV3-Y1 AV3-Y1 2.14 2.18 -2.20 37.24 27.73 5.68 5.37 4.02 3.53 -5.74 36.24 2.11 2.18 2.18 2.18 -2.20 -1.01 36.24 5.78 5.78 4.02 3.53 -6.71 -6.72 36.34 6.85 5.76 4.23 3.56 -6.72 -6.71 40.65 3.147 6.66		-1.90	18.20	5.63	0.78	4.47	-0.82	-6.10	-13.25	1.94
2233 6.82 0.06 -5.50 -1.01 .7.51 -1630 0.86 0.32 0.04 -0.26 -0.05 -0.35 -0.76 Wind Perpendicular to Long Site and Short Your AV2-Y1 A/2-Y1 A/2-Y1 A/2-Y1 A/2-Y1 A/4-Y1 A/1-Y1 A/2-Y1 A/2-Y1 A/3-Y1 A/3-Y1 A/3-Y2 A/4-Y1 A/1-Y1 A/2-Y1 A/3-Y1 A/3-Y1 A/3-Y1 A/3-Y2 A/4-Y1 A/1-Y1 A/2-Y1 A/3-Y1 A/3-Y1 A/3-Y2 A/4-Y1 37.24 27.73 5.68 5.37 4.02 3.54 6.41 38.34 28.46 5.77 4.03 3.64 4.53 3.74 6.41 42.46 31.47 6.85 6.70 4.63 3.74 6.61 42.46 33.57 6.85 6.20 4.63 6.72 4.61 42.46 33.61 6.72 3.64 4.01 6.65 6.74 </td <td>I I</td> <td>-1.97</td> <td>18.83</td> <td>5.82</td> <td>0.80</td> <td>4.82</td> <td>-0.85</td> <td>-6.32</td> <td>-13.71</td> <td>2.01</td>	I I	-1.97	18.83	5.82	0.80	4.82	-0.85	-6.32	-13.71	2.01
0.86 0.32 0.04 -0.26 -0.05 -0.76 -0.76 Wind PerpendioJar to Long Sile and Short Total Wind Load in Lateral Resisting Elements (Kp) A11-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 AV2-Y1 16.24 2.83 3/3-Y1 AV3-Y1 AV3-Y1 AV3-Y1 16.24 14.64 2.86 5.37 4.02 3.53 -5.74 37.24 2.773 6.68 5.37 4.02 3.53 -5.74 37.34 2.773 6.68 5.74 4.22 3.55 -6.74 37.34 2.773 6.68 5.76 4.02 3.53 -5.74 40.63 3.147 6.68 5.70 4.83 3.88 -6.72 42.46 31.47 6.66 6.20 4.88 -6.73 -6.83 42.66 5.77 6.86 6.20 4.88 -6.72 3.63 42.46 3.147 6.66 6.20	I I	-2.34	22.38	6.92	0.96	-5.50	-1.01	-7.51	-16.30	2.39
Wind Perpendiouar'to Long Site and Short Total Wind Load in Lateral Resisting Elements (Kp) AV1-Y1 AV2-Y1 AV4-Y1 AV1-Y1 AV2-Y1 AV3-X1 AV3-Y2 AV4-Y1 18.24 14.04 2.86 3.04 2.11 2.18 -2.20 37.24 2.773 6.68 6.37 4.02 3.55 6.14 36.74 2.773 6.68 5.37 4.22 3.55 6.14 37.24 2.773 6.68 5.36 4.02 3.55 6.14 40.63 30.13 6.35 5.46 4.53 3.74 6.11 42.46 31.47 6.68 6.00 4.78 3.88 6.02 42.86 3.00.3 3.64 5.03 4.61 6.03 43.86 3.03 3.64 6.03 4.03 6.03 43.86 5.73 1.48 2.14 1.37 2.00 1.06 <td></td> <td>-0.41</td> <td>0.96</td> <td>0.32</td> <td>0.04</td> <td>-0.26</td> <td>-0.05</td> <td>-0.35</td> <td>-0.76</td> <td>0.11</td>		-0.41	0.96	0.32	0.04	-0.26	-0.05	-0.35	-0.76	0.11
Total Wind Load in Lateral Resisting Elements (Kp) AV1-Y1 AV2-Y1 AV2-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV4-Y1 AV3-Y2 AV4-Y1 AV4-Y1 AV3-Y2 AV4-Y1 AV3-Y2 AV4-Y1 AV4-Y1 AV4-Y1 AV3-Y2 AV4-Y1 AV4-Y1 AV4-Y1 AV3-Y1 AV3-Y2 AV4-Y1 AV3-Y2 AV4-Y1 AV3-Y1 AV3-Y1 AV3-Y1 AV3-Y1 AV3-Y1 AV3-Y1 AV3-Y1 <th></th> <th></th> <th></th> <th>Wind Pe</th> <th>rpendicular to</th> <th>o Long Side a</th> <th>nd Short</th> <th></th> <th></th> <th></th>				Wind Pe	rpendicular to	o Long Side a	nd Short			
AV1-Y1 AV2-Y1 AV2-Y1 AV3-Y2 AV4-Y1 AV4-Y1 16.24 14.04 2.86 3.04 2.11 2.18 -2.20 37.24 2.47 6.68 3.04 2.11 2.18 -2.20 38.74 28.773 6.68 5.37 4.22 3.55 -6.01 38.74 28.46 5.83 5.46 4.22 3.55 -6.01 40.03 30.13 6.35 5.70 4.53 3.74 -6.41 40.03 30.13 6.35 5.70 4.58 3.63 -6.72 42.45 31.47 6.68 6.00 4.78 3.88 -6.17 42.45 31.47 6.68 6.00 4.78 3.84 -6.72 43.66 32.57 6.68 6.00 4.78 3.63 -6.53 43.66 5.73 1.48 2.14 1.37 2.00 1.06				Total V	Wind Load in	Lateral Resis	ting Elements	s (Kip)		
18.24 14.04 2.86 3.04 2.11 2.18 -2.20 37.24 27.73 5.68 5.37 4.02 3.53 -6.74 38.74 27.73 5.68 5.76 4.02 3.53 -6.74 38.74 27.73 5.68 5.76 4.02 3.53 -6.74 40.63 30.13 6.35 5.76 4.33 3.74 6.41 40.63 30.13 6.36 6.70 4.78 3.88 -0.72 42.66 31.47 6.68 6.00 4.78 3.88 -0.72 43.66 32.57 0.86 6.20 4.98 3.83 -0.72 45.65 5.73 1.48 2.14 1.37 2.00 1.06	I .	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
37.24 27.73 568 5.37 4.02 3.53 5.74 36.34 28.48 5.83 5.46 4.23 3.74 -0.41 40.63 30.13 6.83 5.76 4.53 3.74 -0.41 40.63 31.47 6.66 6.00 4.78 3.88 -0.72 42.45 31.47 6.66 6.00 4.78 3.88 -0.72 43.66 5.70 6.96 6.00 4.78 3.88 -0.72 43.66 5.00 5.70 4.96 6.00 4.78 3.88 -0.72 56.65 5.73 1.46 7.30 4.96 5.30 -0.76	I .	2.12	18.24	14.04	2.88	3.04	2.11	2.18	-2.20	7.19
38.34 28.46 5.83 5.46 4.22 3.55 -0.01 40.63 30.13 6.35 5.76 4.53 3.74 -0.41 40.63 30.13 6.35 5.76 4.53 3.74 -0.41 42.45 31.47 6.66 6.00 4.78 3.88 -0.72 42.86 33.147 6.65 6.00 4.78 3.88 -0.72 43.66 35.07 5.76 7.83 3.64 5.53 -0.63 40.66 5.73 1.48 2.14 1.37 2.00 1.06	I 1	3.82	37.24	27.73	5.68	5.37	4.02	3.53	-5.74	14.19
40.83 30.13 6.36 5.76 4.53 3.74 -6.41 42.45 31.47 6.66 6.00 4.78 3.88 -6.72 42.45 31.47 6.66 6.00 4.78 3.88 -6.72 43.66 32.057 6.56 7.30 4.98 6.03 49.66 32.05 6.43 4.01 -0.86 6.65 32.03 4.33 3.44 5.63 -6.63 5.65 5.73 1.48 2.14 1.37 2.00 1.06	I .	4.14	38.34	28.46	5.83	5.46	4.22	3.55	-6.01	14.83
42.45 31.47 6.68 6.10 4.78 3.88 -6.72 43.66 32.57 6.86 6.20 4.48 7.31 6.48 43.66 5.73 1.65 6.20 4.48 4.01 6.48 65.65 5.73 1.48 2.14 1.37 2.00 1.06	I 1	4.46	40.63	30.13	6.35	5.76	4.53	3.74	-6.41	15.86
43.06 32.57 6.86 6.20 4.88 4.01 6.86 46.05 38.00 5.75 7.83 3.54 5.53 -6.63 5.65 5.73 1.48 2.14 1.37 2.00 1.06	I	4.71	42.45	31.47	6.68	6.00	4.78	3.88	-6.72	16.69
48.95 38.00 5.75 7.83 3.54 5.63 -8.63 5.65 5.73 1.48 2.14 1.37 2.00 1.06	L	4.82	43.96	32.57	6.95	6.20	4.98	4.01	-6.98	17.37
5.65 5.73 1.48 2.14 1.37 2.00 1.06		3.03	49.95	38.00	5.75	7.93	3.54	5.53	-6.63	14.37
		1.23	5.65	5.73	1.48	2.14	1.37	2.00	1.06	3.69

S
Case
Wind
Table AF.4,

2			
i.			
•			

		Maximum V	Vind Base Sh	ear in Lateral	Resisting Ele	ments (Kip)		
AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
76.49	325.00	304.42	63.85	126.60	63.35	121.65	84.03	159.59
	Ma	ximum Wind	Base Shear ir	n Lateral Resi	sting Element	s (Kip/ft Leng	th)	
AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
7.40	15.42	11.27	7.82	9.62	7.53	9.24	7.20	7.82
	•	1		•		•	•	
	Ma	ximum Overti	urning Momer	nt Shear in La	teral Resistin	g Elements (K	(ip)	
AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-Y1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1
3822.4	16608.2	15713.7	3190.7	6495.6	3165.7	6231.1	4251.5	7974.7

Table AF.5, Maximum Element Base Shear and Overturning Moment

								ularity A		
	Laten	al Resisting			A Pro	s-w, level	(Kip)	and the second		-1
		ember.	0,1	1,2	2,3	3,4	4,5	5, Roof!	Roofl, Top	
		VI-x1	10.41	0.49	0.77	0.62	0.51	2.52	6.94	
		1-41	43.63	1.13	1.60	2.07	1.71	9.64	51.49	
	A	V2-41	40.31	1.01	2.40	1.91	1.58	8.90	46.25	
	Av	(2-X)	8.69	0.42	0.65	0.52	0.43	2.35	5.80	
	A	V3-YI	16.69	0.34	0,99	0.79	0.65	3.68	19.12	
	Av	13-X1	8.62	0.41	0.64	0.51	0.42	2.33	5.75	
	Av	13-42	16.02	0.37	0.95	0,76	0.63	3.53	18.34	
	A	V4 - Y1	10.97	0.21	0.65	0.51	0.43	2.41	12.51	
	A	4-x]	21.71	1.04	1.62	1.29	1.07	5.88	14,49	
CNAMP	I _{cr,x}	ix = terr de	3/12				7.44 = 8 X.444 = 4.	- (0.75 + 0 5 ″	0.5+1/2)2	
K							9688 = 9	+++ - 2(0. +++ - 3,5	75 + 0.5 + V2)	
		excel calcu		story dri-	fx) on					
	+010	owing page	2							
					C D-OF	Sec tion	66.1.7	2		
	Drift Drift	Limit = Limit(h=14')	H/400 , = 14(12)/4	per At: 400 = 0.42	sc 7-05	260 1100				
	Drifz Drifz Drifz	Limit = Limit(h=14') r Limit(h=16')	H/400) = 14(12)/4) = 16(12)/4	per At: 400 = 0.42 400 = 0.43	st 7-05 1" 8"	260 1100				
	Drifz Drifz Drifz	Limit = Limit(h=14') r Limit(h=16')	H/400) = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.41	8"	366 1104				
	Drifz Drifz Drifz	Limit = Limit(h=14') r Limit(h=15')	H/400 / = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.43	8"	Sec from	,			
	Drifz Drifz Drifz	Limi+ = Limi+(h=14') F Limi+(h=16')	H/400 / = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.41	8"	Sec From				
	Drift Drift Drift	Limi+ = : Limi+(h=14") r Limi+(h=16")	H/400 / = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.43	8"	Jec rican				
	Drift Drift Drift	Limi+ = : Limi+(h=14") r Limi+(h=13"	H/400 / = 14(12)/4) = 16(12)/4	per AI: 420 = 0.42 460 = 0.42	8"	JEC TICH				
	Drift Drift Drift	Limi+ = : Limi+(h=14') r Limi+(h=16')	H/400 / = 14(12)/4) = 16(12)/4	per AI: 420 = 0.42 460 = 0.42	8"	JEC TICH		*		
	Drifz Drifz Drifz	Limi+ = Limi+(h=14') r Limi+(h=16')	H/400 , = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.41	8"	JEC TICH		~		
	Drifz Drifz Drifz	Limit = Limit(h=14') r Limit(h=16')	H/400 , = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.43	ε" 8"	JEC TICH		~		
	Drifz Drifz Drifz	Limit = Limit(h=14') r Limit(h=16')	H/400 , = 14(12)/4) = 16(12)/	per AI: 400 = 0.42 400 = 0.49	גיי ציי	JEC TICH		~		
	Drifx Drifx Drifx	Limit = Limit(h=14') FLimit(h=16')	H/400 , = 14(12)/4) = 16(12)/4	per A±: 420 = 0.42 400 = 0.49	גיי ציי	JEC TICH		~		
	Drifx Drifx Drifs	Limit = Limit(h=14') FLimit(h=16')	H/400 , = 14(12)/4) = 16(12)/4	per AI: 400 = 0.42 400 = 0.49	ι" 8"	JEC TICH		~		
	Drift Drift Drift	Limit = Limit(h=14') FLimit(h=16')	H/400 , = 14(12)/4) = 16(12)/4	рет А± 420 = 0.42 400 = 0.49	ι" 8"	JEC TICH		~		
	Drift Drift Drift	Linnit = Linnit(h=14") FLinnit(h=16")	H/400 , = 14(12)/4) = 16(12)/	per AI: 400 = 0.42 400 = 0.49	ניי גיי גיי	JEC TICH		~		
	Drift Drift Drift	Limit = Limit(h=14') r Limit(h=16')	H/400 , = 14(12)/4) = 16(12)/	рет АI: 400 = 0.42 400 = 0.41	גיי גיי גיי	JEC TICH		*		
	Drift Drift Drift	Limit = Limit(h=14') r Limit(h=16')	H/400 , = 14(12)/4) = 16(12)/	рет АI: 400 = 0.42 400 = 0.41	ניי ג" ג"	JEC TICH		*		
	Drift Drift Drift	Limit = Limit(h=14') F Limit(h=16')	H/400 , = 14(12)/4) = 16(12)/	рет АI: 400 = 0.42 400 = 0.41	ι" 8"	JEC TICH		*		
	Drift Drift Drift	F Limi + (N = 16)) = 16(12).^	рет АI: 400 = 0.42 400 = 0.41	ι" 8"	JEC TICH		*		
	Drifz Drifz Drifz	F Limi + (N = 16)	H/400 , = 14(12)/4) = 16(12)/4	рет АI: 400 = 0.42 400 = 0.41	8''			×		
	Drifz Drifz Drifz	F Limi + (N = 16)) = 16(12).^	per AI: 400 = 0.42 400 = 0.41	ניי ציי					
	Drifz Drifz Drifz	F Limi + (N = 16)) = 16(12).^	per AI: 400 = 0.42 400 = 0.41	8''					
	Drifz Drifz Drifz	F Limi + (N = 16)) = 16(12).^	per AI: 400 = 0.42 400 = 0.49	8''					
	Drifz Drifz Drifz	F Limi + (N = 16)) = 16(12).^	per AI: 400 = 0.42 400 = 0.49	8''					
	Drifz Drifz Drifz	F Limi + (N = 16)) = 16(12).^	рет АI: 400 = 0.42 400 = 0.49	8''					

[2] [3]	,, Тор	0.0028	0.0024	0.0010	0.0047	0.0037	0.0042	0.0035	0.0035	0.00075
Δ _{drift} , story (in) ^{[2] [3]}	0, 1 1,	0.0062 (0.0031 (0.0013 (0.010 (0.0048 (0.0095 (0.0046 (0.0045 (0.0017 0
7				-						
ΔP _{max-w, level} (Kip)	1,, Top	6.94	51.69	46.25	5.80	19.12	5.75	18.34	12.51	14.49
ΔP_{max-w}	0, 1	10.41	43.63	40.31	8.69	16.69	8.62	16.02	10.97	21.71
I _{cr} / I _{gross}		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
l _{conc, xx} (in ⁴)	[2]	317771	2697046	5668704	156865	657385	171398	657385	457333	2449146
(ai) d‡ao⊖	uepui (iii)	124.00	252.94	324.00	00'86	158.00	100.94	158.00	140.00	244.94
Thickness	(in)	8	8	8	8	8	8	8	8	8
Lateral Resisting	Member	1X-1VA	17-1VA	172-Y1	1X-2VA	1V3-Υ1	1X-8VA	AV3-Y2	174-γ1	AV4-X1

	Thaison Nguyen				Jrv	egulari	ty Analysis	
	C. Irregularity an	d Selimie						
	1) Check for R	le-entrant	Corner, diap	hragm dise	continung i	rreg.		
	Floor Type	Dimensions			nt Corner	Gross	Void	
		Re-entrant X		X	y y	Area (fx²)	Area (fz ^L)	
	A	197.51	73.59	28.00	40.83	15785.		
	B	225.51	115,43	2	2	28440		
	C	225.51	115,43	2	2	26440	786.43	
'n	Floor Type	Re-entri	ant Corner	Extension	Percentag	e	Void Perc	entage
"DAMPAD"	A	25/197.51	* 100 = 14.2%	40.83 /7	3.59 - 100 = 5	5.5%	1929.76/257	85.62 + 100 = 7.5%
N.	В		+ 100 = 0.9%		* 100 = 1.79		2053.77/26440	
	L	2/225.51	+100 = 0.9%	2/115.45	* 100 = 1.79	0	786.43/26440	100 = 3.0%
			n has an e					
	since the *** Due to con- out-of-pla *** Non paralle Increase in for per ASC E7-0	e voids are time ty of ane offset el systems ces due to 5 § 12.3.3.4	irreg does irreg does horizoutal +	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C I
	since the *** Due to con- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) Check Soft	e voids are time ty of ane offset el systems ces due to 5 § 12.3.3.4	ateral force irreg irreg does horitoutal f	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	c
	since the *** Due to con- out-of-pla *** Non paralle Increase in for per ASC E7-0	e voids are time ty of ane offset el systems ces due to 5 § 12.3.3.4	ateral force irreg irreg does horitoutal f	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) check soft K~1/L ³	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and	ateral foru irreg irreg does horitoutal f	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	c
	since the *** Due to com- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) check soft K~1/L ³ Story Hi	e voids are timulity of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16	e ≤ 50% d lateral force irreg irreg does horizoutal + Weight Irr K 0.00024	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) Check Soft K~1/L ³ Story Hi 1 2	e voids are timulity of the offset el systems ces due to 5 § 12.3.3.4 Story and eight (fx) 16	e ≤ 50% d lateral force irreg does horizoutal + Weight Irr Weight Irr K 0.00024 0.00024	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) check soft K~1/L ³ Story Hi	e voids are timulty of the offset el systems ces due to 5 § 12.3.3.4 Story and eight (fx) 16 14	k ± 50% o lateral force irreg irreg does horizoutal + Weight Irr K 0.00024 0.00024 0.00036	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) Check Soft K~1/L ³ Story Hi 1 2	e voids are timulity of the offset el systems ces due to 5 § 12.3.3.4 Story and eight (fx) 16	e ≤ 50% d lateral force irreg does horizoutal + Weight Irr Weight Irr K 0.00024 0.00024	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	c
	since the *** Due to com- out-of-pla *** Non paralle Increase in for per ASC E7-0 2) Check Soft K~1/L ³ Story H 1 2 3 4	e voids are timulty of the offset el systems ces due to 5 § 12.3.3.4 Story and eight (fx) 16 14 14	E ≤ 50% o lateral force irreg does horizoutal + Weight Irr Weight Irr 0.00024 0.00036 0.00036 0.00036	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla ** Non paralle Increase in for per ASC E7-0 2) Check Soft K ~ $1/L^3$ Story Hi 1 2 3 4 5	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16 14 14 14	 ≤ 50% lateral force irreg. irreg does horizoutal + Weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036 0.00036 	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla ** Non paralle Increase in for per ASC E7-0 2) Check Soft K ~ $1/L^3$ Story Hi 1 2 3 4 5	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16 14 14 14	 ≤ 50% lateral force irreg. irreg does horizoutal + Weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036 0.00036 	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla ** Non paralle Increase in for per ASC E7-0 2) Check Soft K ~ $1/L^3$ Story Hi 1 2 3 4 5	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16 14 14 14	 ≤ 50% lateral force irreg. irreg does horizoutal + Weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036 0.00036 	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla ** Non paralle Increase in for per ASC E7-0 2) Check Soft K ~ $1/L^3$ Story Hi 1 2 3 4 5	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16 14 14 14	 ≤ 50% lateral force irreg. irreg does horizoutal + Weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036 0.00036 	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla ** Non paralle Increase in for per ASC E7-0 2) Check Soft K ~ $1/L^3$ Story Hi 1 2 3 4 5	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16 14 14 14	 ≤ 50% lateral force irreg. irreg does horizoutal + Weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036 0.00036 	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C
	since the *** Due to com- out-of-pla ** Non paralle Increase in for per ASC E7-0 2) Check Soft K ~ $1/L^3$ Story Hi 1 2 3 4 5	e voids are timulty of the offset el systems ces due to 5 \$ 12.3.3.4 Story and eight (fr) 16 14 14 14	 ≤ 50% lateral force irreg. irreg does horizoutal + Weight Irr 0.00024 0.00036 0.00036 0.00036 0.00036 0.00036 	if the gro e resisting in it exist forces is 1	os> floor d o elements not require	there	gn area.	C

	Thaison Nguyen		Irregularity Analisis	7/7
	Storys Karg 1,2,3 [0.00024+0.00036(2)]/ 2,3,4 0.00036 3,4,5 0.00036 4,5,6 0.00036	(3 = 0.00032		
, Oraiwy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wett, 5 / Witt, 101.7% 101.4% 101.8% 100.2%	i (%) ^[16]	
A	[10] Using effective floor weig Only the first story expen. Extreme soft story irreg. Ki/Ki+1 > 70% Weight irreg. doesn't exist	soft story irreg. doesn't exist in i	due to Ki/Kini < 80%. any story, since	
	In force increase or modifi Table 12.3-2, \$12.3.3.4 Drift Limit Factor = 0.015 L	icatious are requ	ired, per ASCE7-05	
	1			
•				

Appendix G: Structural Computer Modeling

G.1 General Modeling Assumptions and Input

- 1. All concrete lateral force resisting elements act as if they're are monolithically cast
- 2. Effective concrete cross-sections is 35% of gross cross-sectional area
- 3. Rigid panel zone factor 1.0
- 4. Considered P- Δ effects for drift analysis
- 5. Seismic importance factor is 1.25
- 6. All pin connections are perfectly frictionless
- 7. Non lateral force resisting elements carry no lateral load to the ground
- 8. Beam end offsets to the pier face
- 9. Floor diaphragms are considered rigid
- 10. MEP openings are ignored
- 11. All material weights are zero
- 12. Use ACI 318-08 and occasionally ACI 318-05 design criteria

Each assumption and input used in the computer modeling was made to simplify modeling the LMOB's structural behavior whilst keeping an eye out for modeling accuracy. Modeling LMOB's structural behavior in a simple manner reduces the structural modeling software's computational time, as well as computer hardware memory. The first assumption was made to ensure that all beams and columns in the lateral force resisting elements will wholly transfer moments. Intrinsically concrete cracks – to compensate for this behavior – the gross concrete cross section was only assumed to be 35% effective. The result is the application of a 0.35 modification factor to all gross concrete cross section. Let it be clear that the value 35% wasn't pulled out of thin air, instead it is based on the recommendation by ACI 318-11 §10.10.4.1. Whereby ACI 318-11 §10.10.4.1 states that concrete beams and walls can be modeled with 35% of the gross cross section being effective.

Default modeling assumptions programmed into structural modeling software – like ETABS and SAP2000 – must be understood and modified if they impede generally accurate structural behavior simulation. One typical default programmed assumption is centerline modeling (Lepage, 2012). In centerline modeling, the beams extend to the centerline of the piers. This impedes accurate stiffness and deflection analysis, because the moment of inertia is double counted. To prevent the issue, the beam's ends are offset to the pier face. Not all default programmed assumptions were overridden, the panel zone factor was maintained to remain equal to 1.0 to represent fully rigid. For concrete, the typical recommended panel zone factor is between 0.5 and 1.0 (Lepage, 2012). If the lateral force resisting element were steel instead of concrete, then the panel zone factor would be changed to 0.5 (Lepage, 2012). Next the assumption to use ACI 318-08 and occasionally ACI 318-05 design criteria, was necessary because ACI 318-11 design criteria wasn't available in the modeling software used – ETABS and SAP2000. As can be seen in the calculations and computer output, there are slight differences.

	otal Diaphragm Mass used in esign I Structural Modeling	Table G.
Floor Level	Unit Total Mass (Kip/ft ²)	Floor Le
0		0
1	2.64E-06	1
2	2.68E-06	2
3	2.65E-06	3
4	2.60E-06	4
5	2.60E-06	5
Roof 1	2.34E-06	Roof

	al Diaphragm Mass used in sign II Structural Modeling
Floor Level	Unit Total Mass (Kip/ft ²)
0	
1	3.05E-06
2	3.05E-06
3	2.99E-06
4	2.93E-06
5	2.92E-06
Roof 1	2.74E-06

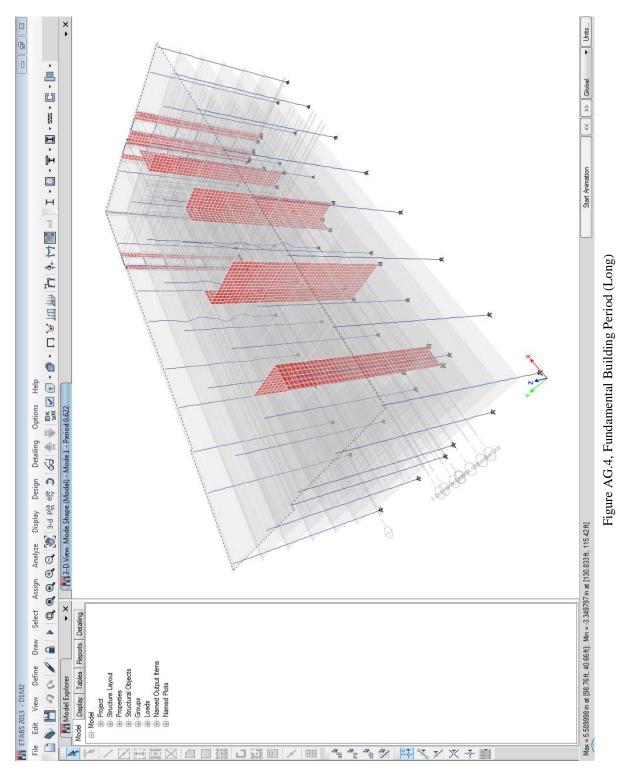
Based upon the predominate theory for modeling lateral force resisting elements – Q-Model (Lollipop Model) – the building mass is concentrated at the floor diaphragms. Modeling by the mentioned method requires all material weights to be set to zero, while the diaphragm is given an equivalent mass. Listed above, in Table G.1 and Table G.2, are the masses applied at the floor diaphragms.

G.2 Non-Formatted Structural Modeling Output

The non-formatted structural modeling output is published in this document as evidence that no computer output was misrepresented when formatting a more compact output. Figure AG.1 to AG.8, are non-formatted structural modeling outputs of Design I and Design II.

Vie	ew											
								Cente	er Mass Rigidity			
	Story	Diaphragm	MassX	MassY	XCM	YCM	CumMassX	CumMassY	XCCM	YCCM	XCR	YCR
	STORY1	D1	101.0603	101.0603	114.75	58.44	101.0603	101.0603	114.75	58.44	120.61	64.29
	STORY5	D1	97.6140	97.6140	114.79	58.90	198.6743	198.6743	114.77	58.67	121.34	64.13
	STORY4	D1	98.0577	98.0577	114.79	58.90	296.7320	296.7320	114.78	58.74	121.78	63.52
	STORY3	D1	99.8325	99.8325	114.79	58.90	396.5646	396.5646	114.78	58.78	121.71	62.23
	STORY2	D1	101.6073	101.6073	114.79	58.90	498.1719	498.1719	114.78	58.80	118.51	59.14
	STORY1	D1	95.3270	95.3270	114.69	58.72	593.4988	593.4988	114.77	58.79	112.77	54.76

G.2.1 Design I


Figure AG.1, Center of Mass and Rigidity for Design I

				F	oint Displaceme	nts		
Story	Point	Load	UX	UY	UZ	RX	RY	RZ
 STORY6	1	WINDDX	0.69	-0.15	0.00	0.00	0.00	0.00
 STORY6	1	WINDDY	-0.24	0.82	0.00	0.00	0.00	0.00
 STORY6	1	WINDT1DX	0.49	-0.17	0.00	0.00	0.00	0.00
 STORY6	1	WINDT1DY	-0.33	0.28	0.00	0.00	0.00	0.00
 STORY6	1	WINDT2	0.07	-0.02	0.00	0.00	0.00	0.00
 STORY6	1	WINDDXY	0.33	0.51	0.00	0.00	0.00	0.00
 STORY6	1	WINDT1DNX	0.54	-0.04	0.00	0.00	0.00	0.00
 STORY6	1	WINDT1DNY	-0.03	0.95	0.00	0.00	0.00	0.00
STORY6	2	WINDDX	0.69	-0.13	0.00	0.00	0.00	0.00

Figure AG.2, Corner Point 1 Displacement for Design I

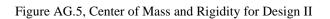
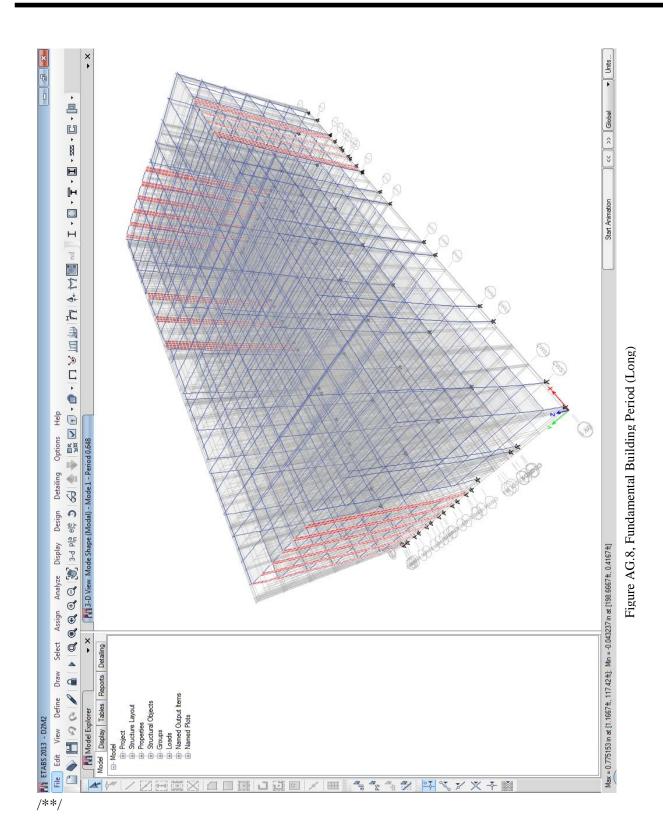

View				-				
				F	Point Displaceme	nts		
Story	Point	Load	UX	UY	UZ	RX	RY	RZ
STORY6	6	WINDDX	0.69	-0.08	-0.10	0.01	0.01	0.00
STORY6	6	WINDDY	-0.24	0.62	1.99	-0.14	-0.19	0.00
STORY6	6	WINDT1DX	0.49	0.00	0.06	0.00	-0.01	0.00
STORY6	6	WINDT1DY	-0.33	0.77	2.41	-0.16	-0.23	0.00
STORY6	6	WINDT2	0.07	0.67	2.12	-0.14	-0.20	0.00
STORY6	6	WINDDXY	0.33	0.40	1.42	-0.10	-0.14	0.00
STORY6	6	WINDT1DNX	0.54	-0.12	-0.22	0.01	0.02	0.00
STORY6	6	WINDT1DNY	-0.03	0.16	0.58	-0.04	-0.06	0.00
STORY6	7	WINDDX	0.70	-0.08	-0.01	0.00	0.00	0.00

Figure AG.3, Corner Point 6 Displacement for Design I

G.2.2 Design II

	/iew											
								Cente	r Mass Rigidity			
	Story	Diaphragm	MassX	MassY	XCM	YCM	CumMassX	CumMassY	XCCM	YCCM	XCR	YCR
٢	STORY1	D1	101.5554	101.5554	114.77	58.42	101.5554	101.5554	114.77	58.42	116.80	59.52
	STORY5	D1	98.4901	98.4901	114.83	58.89	200.0455	200.0455	114.80	58.65	117.01	59.08
	STORY4	D1	98.9337	98.9337	114.83	58.89	298.9792	298.9792	114.81	58.73	117.23	58.76
	STORY3	D1	100.7083	100.7083	114.83	58.89	399.6875	399.6875	114.82	58.77	117.40	58.60
	STORY2	D1	102.4829	102.4829	114.83	58.89	502.1705	502.1705	114.82	58.79	117.47	58.77
	STORY1	D1	97.5386	97.5386	114.74	58.71	599.7091	599.7091	114.81	58.78	116.62	59.10



				I					
				I	Point Displaceme	ints			
Story	Point	Load	UX	UY	UZ	RX	RY	RZ	
STORY6	1	WINDDX	0.56	0.00	0.00	0.00	0.00	0.00	
STORY6	1	WINDDY	0.01	0.84	-0.07	0.00	0.00	0.00	
STORY6	1	WINDT1DX	0.41	-0.03	0.00	0.00	0.00	0.00	
STORY6	1	WINDT1DY	-0.06	0.50	-0.04	0.00	0.00	0.00	
STORY6	1	WINDT2	0.25	0.32	-0.03	0.00	0.00	0.00	
STORY6	1	WINDDXY	0.43	0.63	-0.05	0.00	0.00	0.00	
STORY6	1	WINDT1DNX	0.44	0.02	0.00	0.00	0.00	0.00	
STORY6	1	WINDT1DNY	0.07	0.75	-0.06	0.00	0.00	0.00	
STORY6	2	WINDDX	0.56	0.00	0.00	0.00	0.00	0.00	

Figure AG.6, Corner Point 1 for Design II

View								
					Point Displaceme	nts		
Story	Point	Load	UX	UY	UZ	RX	RY	RZ
STORY6	6	WINDDX	0.56	0.00	0.00	0.00	0.00	0.00
STORY6	6	WINDDY	0.01	0.81	-0.07	0.00	0.00	0.00
STORY6	6	WINDT1DX	0.41	0.02	0.00	0.00	0.00	0.00
STORY6	6	WINDT1DY	-0.06	0.73	-0.07	0.00	0.00	0.00
STORY6	6	WINDT2	0.25	0.60	-0.06	0.00	0.00	0.00
STORY6	6	WINDDXY	0.43	0.61	-0.06	0.00	0.00	0.00
STORY6	6	WINDT1DNX	0.44	-0.02	0.00	0.00	0.00	0.00
STORY6	6	WINDT1DNY	0.07	0.49	-0.04	0.00	0.00	0.00
STORY6	7	WINDDX	0.56	0.00	0.01	0.00	0.00	0.00

Figure AG.7, Corner Point 6 for Design II

Appendix H: Lateral Design for Design I and II

H.1 Re-Design I: Exterior Lateral Resisting Elements

H.1.1 Loads Applied

	Table AH.1., Wind Load Case Nomenclature
Wind Load Case	Description
WINDDX	Wind Case I, wind perpendicular to east and west walls
WINDDY	Wind Case I, wind perpendicular to north and south walls
WINDT1DX	Wind Case II, wind perpendicular to east and west walls, CCW moment
WINDT1DNX	Wind Case II, wind perpendicular to east and west walls, CW moment
WINDT1DY	Wind Case II, wind perpendicular to north and south walls, CCW moment
WINDT1DNY	Wind Case II, wind perpendicular to north and south walls, CW moment
WINDDXY	Wind Case III
WINDT2	Wind Case IV

(a) Columns

	Та	ble AH.2,	Lateral Lo	ad Applie	d		
Pier	Load Case			Flevel,I	(Kip)		
Assembly		1	2	3	4	5	Roof
	WINDDX	-1.8	-1.94	0.25	1.32	1.68	15.28
	WINDDY	0.56	0.27	1.07	0.14	0.85	-7.28
	WINDT1DX	-1.79	-1.37	0.25	0.98	1.22	10.78
P5X1 + P5X2	WINDT1DY	-1.68	0.65	1.12	0.05	0.69	-9.19
	WINDT2	-3.23	-0.43	1.13	0.75	1.43	0.1
	WINDDXY	-0.94	-1.24	0.99	1.09	1.9	6
	WINDT1DNX	-0.91	-1.54	0.14	1	1.3	12.13
	WINDT1DNY	2.5	-0.23	0.47	0.16	0.6	-1.73
	WINDDX	-0.42	0.06	0.16	-0.07	-0.17	-1.78
	WINDDY	6.66	-1.76	-1.84	0.00	-0.93	16.6
	WINDT1DX	0.48	-0.12	-0.06	-0.02	-0.11	0.13
P5Y1 +	WINDT1DY	8.81	-2.24	-2.27	0.00	-1.02	20.5
P5Y2	WINDT2	8.11	-2.04	-2.02	-0.03	-0.89	17.84
	WINDDXY	4.68	-1.27	-1.26	-0.04	-0.83	11.11
	WINDT1DNX	-1.11	0.21	0.28	-0.06	-0.15	-2.8
	WINDT1DNY	1.2	-0.4	-0.48	0	-0.39	4.41
	WINDDX	7.07	-3.11	-6.85	-6.28	-4.69	-0.63

	WINDDY	-31.85	21.07	38.18	33.18	37.69	17.78
	WINDT1DX	2.55	0.07	-1.06	-1.16	0.02	0.65
P5Y3 + P5Y4	WINDT1DY	-37.64	26.97	47.64	41.16	46.43	21.38
	WINDT2	-30.45	23.67	40.71	34.96	40.27	18.81
	WINDDXY	-18.6	13.48	23.5	20.17	24.76	12.86
	WINDT1DNX	8.05	-4.72	-9.23	-8.26	-7.06	-1.58
	WINDT1DNY	-10.15	4.64	9.63	8.62	10.1	5.3

Table AH.3, Axial	Load Break I	Down for Piers of Interi	or Lateral F	orce Resisting Elements
Story	Pier	Ax	ial Load, F _p	(Kip)
		Wind Induced	Live	Non-SW Dead
STORY6		29.23	3.03	12.6
STORY5	P1X	50.56	8.74	12.6
STORY4		72.26	8.74	12.6
STORY3	PIA	94.3	8.74	12.8
STORY2		120.49	8.74	13.0
STORY1		145.32	8.74	12.9
STORY6		-29.23	3.62	15.1
STORY5	P1Y	-50.56	11.7	15.1
STORY4		-72.26	11.7	15.1
STORY3		-94.3	11.7	15.3
STORY2		-120.49	11.7	15.5
STORY1		-145.32	11.7	15.4
STORY6		42.04	5.07	21.1
STORY5		63.19	15.74	21.1
STORY4	P2Y	84.39	15.74	21.1
STORY3	121	104.15	15.74	21.5
STORY2		119.6	15.74	21.8
STORY1		127.97	15.74	21.6
STORY6		-42.04	20.26	84.4
STORY5		-63.19	54.2	84.4
STORY4	P2X	-84.39	54.2	84.4
STORY3	12/	-104.15	54.2	85.7
STORY2		-119.6	54.2	87.1
STORY1		-127.97	54.2	86.4
STORY6		-20.36	11.92	49.7
STORY5		-33.11	32.5	49.7
STORY4	P3X	-46.05	32.5	49.7
STORY3	1 3/1	-58.68	32.5	50.5
STORY2		-82.03	32.5	51.3
STORY1		-123.49	32.5	50.9

STORY6		20.36	14.8	61.7
STORY5		33.11	40.47	61.7
STORY4	P3Y2	46.05	40.47	61.7
STORY3	P312	58.68	40.47	62.7
STORY2		82.03	40.47	63.6
STORY1		123.49	40.47	63.2
STORY6	P4Y	30.39	7.51	31.3
STORY5		49.92	20.73	31.3
STORY4		76.95	20.73	31.3
STORY3	Γ4Ι	101.84	20.73	31.8
STORY2		117.94	20.73	32.3
STORY1		110.7	20.73	32.0
STORY6		-30.39	19.03	79.3
STORY5		-49.92	52.9	79.3
STORY4	P4X	-76.95	52.9	79.3
STORY3	Γ4Λ	-101.84	52.9	80.6
STORY2		-117.94	52.9	81.8
STORY1		-110.7	52.9	81.2

Table AH.4, Az	xial Load Bre	ak Down for Piers of P Elements	erimeter Lateral I	Force Resisting
Story	Pier	Ax	ial Load, F _p (Kip))
		Wind Induced	Live	Non-SW Dead
STORY6		10.11	0	0
STORY5	P5X1	20.48	0	0
STORY4		21.91	0	0
STORY3		22.47	0	0
STORY2		21.08	0	0
STORY1		16.91	0	0
STORY6	DCVO	-10.11	0	0
STORY5		-20.48	0	0
STORY4		-21.91	0	0
STORY3	P5X2	-22.47	0	0
STORY2		-21.08	0	0
STORY1		-16.91	0	0
STORY6		12.97	0	0
STORY5		24.89	0	0
STORY4	P5Y1	24.25	0	0
STORY3	FJII	22.83	0	0
STORY2		20.7	0	0
STORY1		19.8	0	0

STORY6		-12.97	0	0
STORY5		-24.89	0	0
STORY4	P5Y2	-24.24	0	0
STORY3		-22.83	0	0
STORY2		-20.7	0	0
STORY1		-19.8	0	0
STORY6	Р5Ү3	0.79	0	0
STORY5		44.66	0	0
STORY4		84.25	0	0
STORY3	F313	129.4	0	0
STORY2		180.8	0	0
STORY1		166.0	0	0
STORY6		-0.79	0	0
STORY5		-44.66	0	0
STORY4	P5Y4	-84.26	0	0
STORY3	P514	-129.4	0	0
STORY2		-180.8	0	0
STORY1		-166.0	0	0

	Table A	H.5, Flexural and Shear Loads	
Beam Spanning Piers	Story	Maximum Moment (Kip-ft)	Shear (Kip)
	STORY5	84.77	10.90
P5Y1 + P5Y2	STORY3	134.03	17.28
	STORY1	194.12	24.89
	STORY5	274.64	44.66
P5Y3 + P5Y4	STORY3	800.50	129.40
	STORY1	1110.00	271.13

H.1.2 Design Loads and Limtations

(a) Columns

	Table AH.6, Base In-Plane Shear and Overturning in Pier Assemblies											
Pier Assembly	Load Case	V _{base} (Kip)	M _{base} (Kip-ft)	Pier Assembly	Load Case	V _{base} (Kip)	M _{base} (Kip-ft)					
	WINDDX	14.8	1435.6		WINDDX	-14.5	-1037.6					
P5X1 +	WINDDY	-4.4	-492.6	P5Y3 +	WINDDY	116.1	7969.6					
P5X2	WINDT1DX	10.1	1013.0	P5Y4	WINDT1DX	1.1	-13.6					
	WINDT1DY	-8.4	-695.8		WINDT1DY	145.9	9871.9					

	WINDT2	-0.3	140.2	WINDT2	127.9	8558.9
	WINDDXY	7.8	707.3	WINDDXY	76.2	5199.3
	WINDT1DNX	12.1	1140.1	WINDT1DNX	-22.8	-1542.2
	WINDT1DNY	1.8	-42.5	WINDT1DNY	28.1	2083.4
	WINDDX	-2.2	-167.2			
	WINDDY	18.7	1333.4			
	WINDT1DX	0.3	3.5			
P5Y1 +	WINDT1DY	23.8	1663.4			
P5Y2	WINDT2	20.9	1448.1			
	WINDDXY	12.4	874.7			
	WINDT1DNX	-3.6	-254.2			
	WINDT1DNY	4.3	337.2			

	Tabl	le AH.7, Maxi	mum Factored In-Plane She	ear and Moments		
Pier	Floor Level	Width (in)	Maximum Shear (Kip)	Maximum Moment (Kip-ft)		
	1		20.78	181.22		
P5Y1	3	48	14.14	89.35		
	5		16.02	81.11		
	1		17.26	143.51		
P5Y2	3	46.5	13.39	80.71		
	5		15.15	74.75		
	1		54.21	454.16		
P5Y3	3	64.5	34.64	236.84		
	5		15.66	103.95		
	1		45.84	964.62		
P5Y4	3	85.5	41.51	599.75		
	5		40.56	262.67		

Т	Table AH.8, Maximum Factored In-Plane Shear and Moments										
Beam	Floor Leve 1	Lengt h (ft)	Heigh t (in)	Maximum Shear (Kip)	Maximum Moment (Kip-ft)	Length- to-Height Ratio	Beam Type				
	1		48	24.89	194.12	1.81	Deep				
BL5Y1T5Y2	3	7.25	48	17.28	134.03	1.81	Deep				
	5		48	10.90	84.77	1.81	Deep				
BL5Y3T5Y2	1	6.92	48	271.13	1110.00	1.73	Deep				
DLJT31312	3	0.92	48	129.40	800.50	1.73	Deep				

5	48	44.66	274.64	1.73	Deep

H.1.3 Structural Lateral System Design

(a) Columns

ę) 🖻 🛙	I Q 1								RAM Cond	rete Wall - AV1	-X1				
	Hon	ne Dia	igrams	FEM	Detailing	9										
	ntinuous ertical	Discontin vertice	nuous	Continuou horizonta	us Disco I hori	ntinuous izontal Generate rei			Make hoops uniform	Perimetral in openings	Diagonal in openings	Layers	Image: Constraint of the second s	Section axes		
	.1	1	1		(benerate rei	niorce	ement]	_
Vertic	al Horizo	ntal Hoop	os									• !	•••• •••			
Group 1 2	Strip Strip 1 Strip 1	Quantity 16 7	#8	8	Level Dist	1 Dist2 0 1									F	⊐ i
3 4 5	Strip 1 Strip 1 Strip 1	7 7 7	#8	18	2 3 4	0 1	4				wrang a					
6	Strip 1	7			5	0 1									· · · · · · · · · .	₽
							_				wind a			-	l <i>/-</i>	
															·····	₽
														-		
															== 	₽
														-		
																3
											mund a			-	Ĩ	
															· · · · · · · · · 	4
											wing :			-		

Figure AH.1, RAM Elements Flexural Design Output of AV1-X1

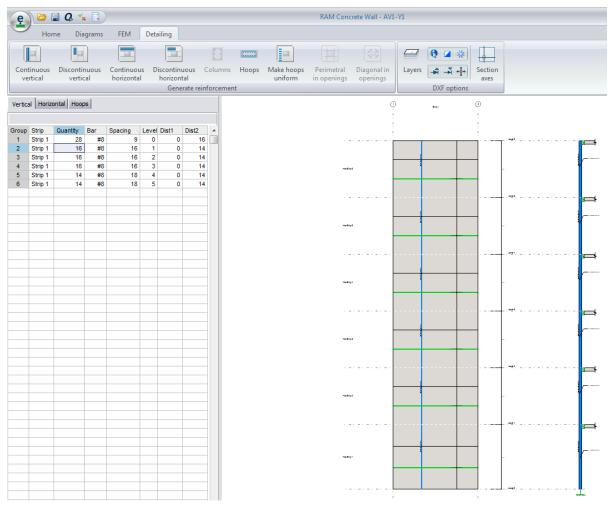


Figure AH.2, RAM Elements Flexural Design Output of AV1-Y1

ę		🛯 📿 🍾)					RAM Conc	rete Wall - AV2	-X1			
	Hor	me Dia	igrams	FEM	Detailir	ng								
	tinuous	Disconti vertic	nuous	Continuou horizonta	us Disco I ho	ontinuou rizontal Generate		Make hoops uniform	Perimetral in openings	Diagonal in openings	Layers	Image: Control of the second seco	Section axes	
Vertica	al Horizo	ontal Hoop	os			Generate	Territore				Ģ	BALOP		
Group 1 2 3	Strip 1 Strip 1 Strip 1	Quantity 16 6	Bar #8 #8 #8	6 18 18	1	0 0 0	16 14 14							
4 5 6	Strip 1 Strip 1 Strip 1	6	#8 #8 #8	18	4	0 0 0	14 14 14						- 	 - 10-14
										ned type				
													·	 - 8
										Helling S			-	ļ/
										Heling 3				
										Healing (

Figure AH.3, RAM Elements Flexural Design Output of AV2-X1

ę) 🗁 🛛	🛛 Q 🎽									RAM Cond	crete Wall - AV	2-Y1				
\bigcirc	Hor	ne Dia	agrams	FEM	Deta	ailing											
												\Leftrightarrow		📢 🖬 🐇			
		Disconti		Continuo				olumns	Hoops	Make hoops	Perimetral	Diagonal in	Layers	· · ·	Section		
Ve	ertical	verti	cal	horizonta	al	horizont Gener		orcement		uniform	in openings	openings		DXF options	axes		
Vartic	al Horizo	ontal Hoo	nsÌ									0			•	,	
TCT UC																	
Group	Strip	Quantity		Spacing			Dist2	~									
1	Strip 1	33		10			16								·		 - P
2 3	Strip 1 Strip 1	21 21		16 16			14 14									1	
4	Strip 1	21					14									-	1/
5	Strip 1	18					14					-					
6	Strip 1	18	#8	18	5	0	14									-	
																	· · · · s ==•
												-					
													1			-	1
																	 · - ·
												-					· · · ·
											2.001					-	
															· · · · · · · · ·		 <mark>9</mark>
																-	- Y
												-					
																	 🐖
													1			-	۳
																1	<u>a</u>
																1	
											and and a					-	1
												_					
																	 · _ · <mark>4</mark> .

Figure AH.4, RAM Elements Flexural Design Output of AV2-Y1

Figure AH.5, RAM Elements Flexural Design Output of AV3-X1

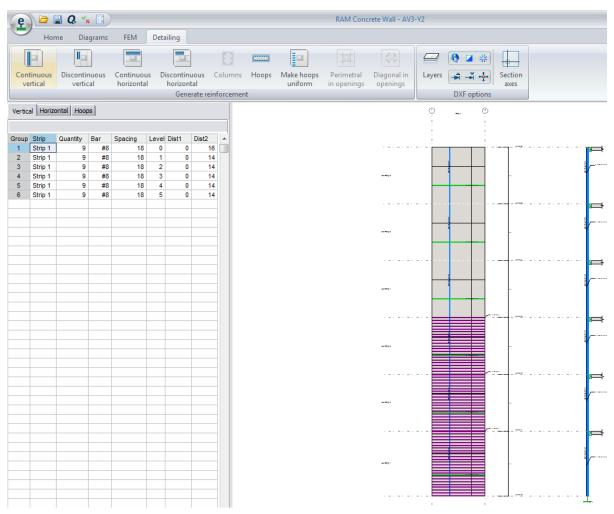


Figure AH.6, RAM Elements Flexural Design Output of AV3-Y2

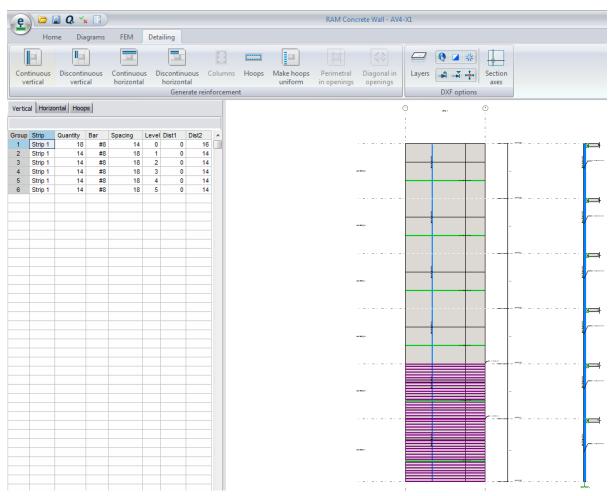


Figure AH.7, RAM Elements Flexural Design Output of AV4-X1

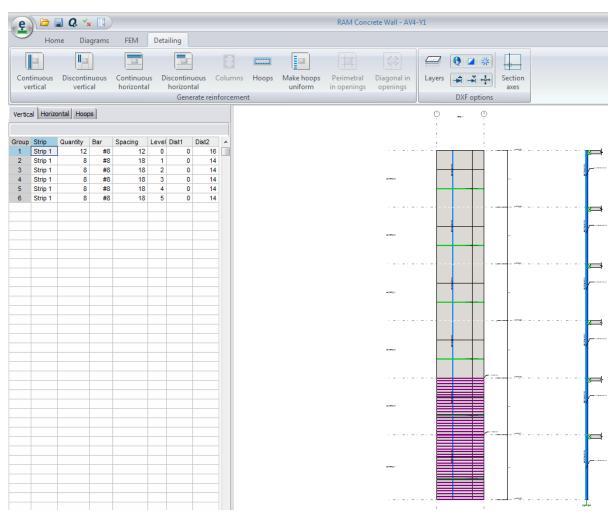


Figure AH.8, RAM Elements Flexural Design Output of AV4-Y1

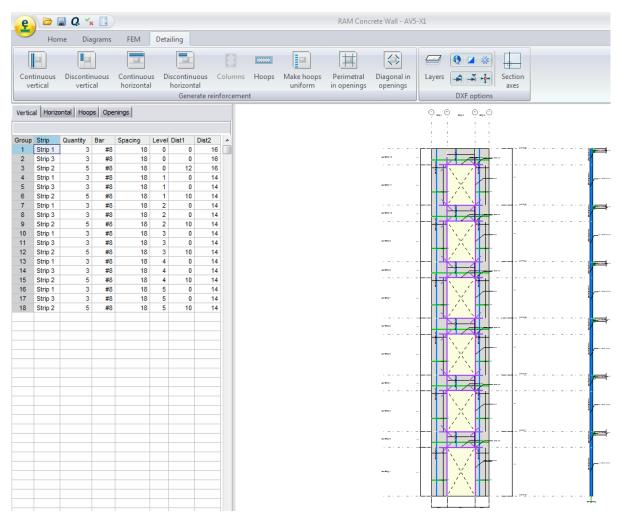


Figure AH.9, RAM Elements Flexural Design Output of AV5-X1

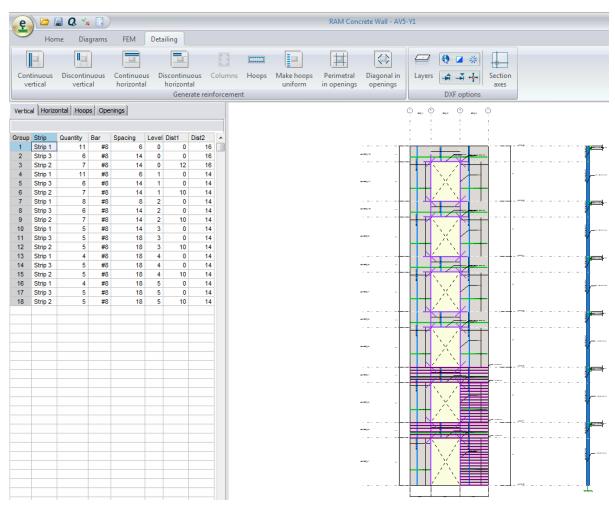


Figure AH.10, RAM Elements Flexural Design Output of AV5-Y1

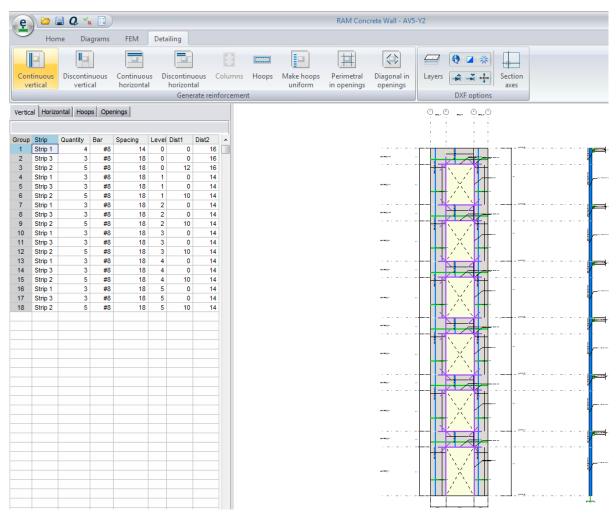


Figure AH.11, RAM Elements Flexural Design Output of AV5-Y2

Tha	ison Nguyen	Design I: SPOT CHECK MEMBER. AVI-YI
	Mu = 19234.9 Kep-ft Derived From ETABS Output	
	Vie = 366.5 Kip	
	Pm = 357.6 Kip , Self dend weight	
-	Member Dipsensions	
	length (in) 252	
	With(in) 8	· · · · · · · · · · · · · · · · · · ·
	Cover(in) 0.75	
	deriverine (in) 250.25	
	tastlic AS repar	
5	f'c = 4000 Asi	
K	f = 60 K31	
MIL	,	
CURRING	a) Determine number of hows Reg	
	*** Assume rebar rows age 6" O.C.	
	ØM_n= 0.9[A,5, (d-42)]	a= nAssfu = 2, 2= # of rebur per row.
	Ma : A,d - aA/2	a= nAssfy # 2, 2= # of rebur per row. 0.85fcb
-	0.9.5 yr.	As= n As, 2, n= number of rows
-	427414 = 2n A 3,1 demane - (n-1)6	
	(2)]	d = dearrang - (n-1) = 6
	- 2nA2, fy * 2nAez	(2)
	r 0.85 + 26 %	
	4274.4 = [dentrome n - 3(n-1)n]	
1	$2A_{31} - h^2 f_y A_{32}$	
	0.8556	
	2137.2 = destrome n - 3(n2-n) - 2.21As, 1n2	
	A3,1	
	2705.3 + 250.25 n - 3n2 + 3n - 1.75 n2	
-	1705.3 = 175 + 253.5n	
-	$0 = n^2 - 53.9n + 569.5$	
1.0	$h = -b = \sqrt{b^2 - 4AC}$	
1.00	2a	
	n = <u>53.4 1 (53.4²-4(564.5)</u>	
	h - 51 u + 11 0	
	$n = \frac{53.4 \pm 23.9}{2}$	
	n = 14,7 rows	
	nactual = 15 rows	C- a/R.
	PATAAL	C = 61.5"
	8 Mn= 0.9 (2x15 = 0.79) (60) (208.25 - 52.3/2)	
	PM. = 0.9[(1422# 182.1)]	E anno - 0.002 (destreng-C)
	BM = 19410.9 Kip-ft > 19234.9	C Contract ->
		Extreme = 0.009 >0.005 V, use of \$=0.0 permitted.
		d= 250, 25 - (M) 6
-		d = 208.25
		- 108.15

	Thation Nguyen			Pesign 1	AVI-YI
	b) Check if 18 m	ows eq. spaced passes			
	sax Initially a	< 0.00107			
	Rebur Row	Position (in) from	Rebar Row	Position (in) From	
		Compression force	1F	Compression face	
	2	1-75	15	130.6 139.81	
	3	10.16	10	199.01	
	4	29.56		158.21	
	5	58.56	19	167.42	
		47,77	10	176-62	
	7	56.97	21	185.82	
	8	66.18		195.03	
	a		12	209.23	
1	1	75.38	23	213.44	
	10	84.58	24		
	1	93.79	15	222.64	
	11	101.99	12	231.84	
	B	121.40	27	150,15	
		I IATCHV	40	AJVIA3	-
		2 rebar yours are in ten		-	
	$A_3 f_{12} = 0.$ 1296 = 0.	255' ba + As' Es 'Es 255' cb (B, c) + As' Es	0.003 (d+c)	d = 162.1	18+150,15
	1996 = 23	12 + 365400 0.0	03d/c +0.003	d' = 1.75	
	18966 = 23,	12 - + 365400 60,003	1+0,003c)		2
	1896C = 23.	12 C2 - 1096.2 (33.97) 12 C2 - 796.32 C + 37)	+ 1096.2C	d' = 33	
	0 = C*	- 34.44 C - 1610.61			20)(0.79)
		2 162 - 4ac 2a	-	Az = 31.	
	C = 60.	95 < (6.18, doesn 4		As = 20	8)(0.79)
		. B comp	tession rebar	A_'= 12.	6 in
		Accument	ion wrong	C = A.	/B,
		· · · · · · · · · · · · · · · · · · ·			
				C = 1	Bifeb
				a = B.	c

	Thaison Ngupan	Deign ISBOT CHECK MEMBER AVI-YI
	Assaming 21 rehar roug are in tension	
	$1991 C = 23.12C^{2} + 320.740 (0.003 + 29.4 + 0.003C)$ $1991 C = 23.12C^{2} + 962.2C - 28289.3$ $0 = 23.12C^{2} - 1028.8C - 28289.3$	d = (86, 18 + 250.25)/2 d = 158.2"
	$D = C^{2} - 44, 5C - 1223.6$ C = 63.7'' > 56.97 , incl 7 compression rebar	d'= (1.75+ 56.97)/2 d'= 29.4"
	Assumption correct	$A_{s} = 2(11)(0.79)$ $A_{s} = 33.18 in^{2}$
"CIMINAD"	ØMn=0.9[A'sE'Es +0.85F'ba] ØMn=0.9[11.06(24000)(0.0016) +0.85(4)(\$)(0.85*63:7)] ØMn=19493 Kip-ft >19254.9 Kip-ft √	$A_{4}' = 2(7)(0.79)$ $A_{4}'' = 11.06 in^{2}$
R	and the second the second the second s	$\mathcal{E}_{3} = \frac{0.003}{63.7} (158.2 - 63.7)$
		Es = 0.0045 >0.004 √
		E's = 0.003 (-29.4+63.7) 63.7
		ξ'= 0.0016 < 0.00207 √, compression rebar deesn't
		Yield . Es, max = 0.003 (250.25-63.7)
		Es, max = 6.00879 >0.005√, can use Ø=0.9
	C) Interaction	
	Pure Arial	
	$P_{0} = 0.85 f'_{c} \left[(A_{grass} - A_{s,grass}) \right] + A_{s,grass} f_{gs}$ $P_{0} = 0.85(4) \left[252(3) - 28(0.74)(2) \right] + 28(0.74)(2)(60)$ $P_{0} = 9.358.4 \text{ Kip}$	
	ØPn = 0.65(9358.4) ØPn= 6082.9 Kãp	
	0.8 9 P = 4866.4 Kip	
	Balance Codition	
	Ep= 0.00207	*** Each contribution of rehar rows were determined in excel,
	C = 0.003 / (0.003 + 0.00207) + 250.25 C = 198.1"	TOWS WE'RE DETERMINED IN WICE !!

Tab	Table AH.8A. Reinforcement Contribution to Axial and Bending Capacity											
Rebar Row	Position (in)	ε _{si}	f _{si} (Ksi)	M _{bi} (Kip-in)	M _b (Kip-ft)	P _b (Kip)						
1	1.75	0.00296	60	14910.0								
2	10.95	0.00278	60	13805.6								
3	20.16	0.00259	60	12701.1								
4	29.36	0.00241	60	11596.7								
5	38.56	0.00222	60	10492.2								
6	47.77	0.00203	58.94	9222.0								
7	56.97	0.00185	53.53	7390.6								
8	66.18	0.00166	48.13	5758.4								
9	75.38	0.00147	42.72	4325.1								
10	84.58	0.00129	37.31	3090.9								
11	93.79	0.00110	31.91	2055.7								
12	102.99	0.00091	26.50	1219.6								
13	112.19	0.00073	21.10	582.5								
14	121.40	0.00054	15.69	144.4	31724.28	3999.86						
15	130.60	0.00035	10.28	-94.6	51724.20	3999.00						
16	139.81	0.00017	4.88	-134.6								
17	149.01	-0.00002	-0.53	24.4								
18	158.21	-0.00020	-5.94	382.5								
19	167.42	-0.00039	-11.34	939.6								
20	176.62	-0.00058	-16.75	1695.7								
21	185.82	-0.00076	-22.16	2650.9								
22	195.03	-0.00095	-27.56	3805.1								
23	204.23	-0.00114	-32.97	5158.3								
24	213.44	-0.00132	-38.37	6710.6								
25	222.64	-0.00151	-43.78	8461.9								
26	231.84	-0.00170	-49.19	10412.2								
27	241.05	-0.00188	-54.59	12561.6								
28	250.25	-0.00207	-60	14910.0								

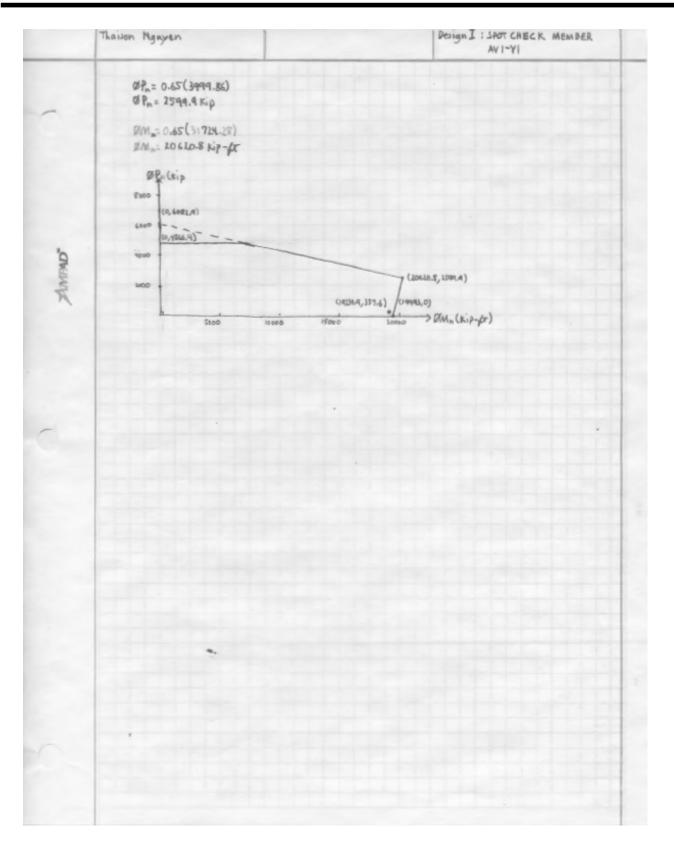


Table AH.9, Part I of #3 Shear Hoop Reinforcement Design: Required Shear Strength

Story	Pier	Length (in)	Thk (in)	d (in)	f'c (Kip/in ²)	F _{V-MAX} (Kip)	V _{u,max} (Kip)
STORY6						12.2	19.52
STORY5						10.14	35.74
STORY4						11.68	54.43
STORY3	P1X	124	8	99.2	4	10.48	71.20
STORY2						10.26	87.62
STORY1						7.26	99.23
STORY6						44.2	70.72
STORY5						39.7	134.24
STORY4			0			36.65	192.88
STORY3	P1Y	252	8	201.6	4	37.28	252.53
STORY2						32.57	304.64
STORY1						38.69	366.54
STORY6						103.92	166.27
STORY5						53.17	251.34
STORY4	DAV	224	0	250.2	4	55.26	339.76
STORY3	P2Y	324	8	259.2	4	51.61	422.34
STORY2						48.77	500.37
STORY1						22.65	536.61
STORY6						13.54	21.66
STORY5						4.86	29.44
STORY4	P2X	98	8	78.4	4	6.42	39.71
STORY3	P2A	98	0	/ 0.4	4	6.75	50.51
STORY2						6.29	60.58
STORY1						5.8	69.86
STORY6						8.08	12.93
STORY5						4.64	20.35
STORY4	P3X	101	8	80.75	4	4.92	28.22
STORY3	IJA	101	0	80.75	4	5.45	36.94
STORY2						10.26	53.36
STORY1						10.16	69.62
STORY6						15.4	24.64
STORY5						8.92	38.91
STORY4	P3Y2	158	8	126.4	4	9.19	53.62
STORY3	1314	150	0	120.7	т	7.07	64.93
STORY2						15.9	90.37
STORY1						45.55	163.25
STORY6						18.05	28.88
STORY5	P4Y	140	8	112	4	4.54	36.14
STORY4						7.34	47.89

STORY3						9.57	63.20
STORY2						6.42	73.47
STORY1						43.62	143.26
STORY6						40.07	64.11
STORY5						37.2	123.63
STORY4	D 437	245	0	105.05	4	39.48	186.80
STORY3	P4X	245	8	195.95	4	37.66	247.06
STORY2						32.26	298.67
STORY1						0.72	299.82
STORY6						7.79	12.46
STORY5						0.9	13.90
STORY4	P5X1	48	10	37.2	6	0.69	15.01
STORY3	PJAI	48	10	57.2	6	0.16	15.26
STORY2						-1.03	13.62
STORY1						-0.58	12.69
STORY6						7.49	11.98
STORY5						0.78	13.23
STORY4	P5X2	46.5	10	34.4	6	0.63	14.24
STORY3	FJA2	40.5	10	54.4	0	0.09	14.38
STORY2						-0.91	12.93
STORY1						-1.22	10.98
STORY6						10.55	16.88
STORY5						-0.54	16.02
STORY4	P5Y1	48	10	37.2	6	0.02	16.05
STORY3	1311	40	10	57.2	0	-1.19	14.14
STORY2						-1.28	12.10
STORY1						5.43	20.78
STORY6						9.95	15.92
STORY5						-0.48	15.15
STORY4	P5Y2	46.5	10	34.4	6	-0.02	15.12
STORY3	1312	40.5	10	54.4	0	-1.08	13.39
STORY2						-0.96	11.86
STORY1						3.38	17.26
STORY6						3.92	6.27
STORY5						5.87	15.66
STORY4	P5Y3	64.5	10	51.6	6	5.73	24.83
STORY3	1010	01.5	10	51.0	0	6.13	34.64
STORY2						4.03	41.09
STORY1						8.2	54.21
STORY6	P5Y4	85.5	10	68.4	6	17.46	27.94
STORY5		00.0	10	00.1	5	40.56	92.83

STORY4			35.43	149.52
STORY3			41.51	215.94
STORY2			22.94	252.64
STORY1			-45.84	179.30

Table AH.10, P	art II of #3	Shear Hoop Reinfor	cement Design: Req	. Steel Shear Resistance
Story	Pier	V _c (Kip) ACI 318-11 §11.4.6.1	ΦV _{c,n} (Kip) ACI 318-11 § 11.2.1.1	V _{s,req} (Kip) ACI 318-11 § 11.4.7.2
STORY6				0.00
STORY5				0.00
STORY4	DIV	100.4	27.6	34.93
STORY3	P1X	100.4	37.6	57.29
STORY2				79.18
STORY1				94.67
STORY6				0.00
STORY5				102.48
STORY4	P1Y	204.0	76.5	180.67
STORY3	FII	204.0	70.3	260.20
STORY2				329.68
STORY1				412.22
STORY6				123.34
STORY5		262.3		236.77
STORY4	P2Y		98.4	354.65
STORY3	ΓΖΙ		20.4	464.76
STORY2				568.80
STORY1				617.12
STORY6				0.00
STORY5				0.00
STORY4	P2X	79.3	29.8	23.20
STORY3	ΓΖΛ	19.3	29.0	37.60
STORY2				51.02
STORY1				63.39
STORY6				0.00
STORY5				0.00
STORY4	P3X	81.7	30.6	0.00
STORY3	13A	01./	50.0	18.62
STORY2				40.50
STORY1				62.18
STORY6	P3Y2	127.9	48.0	0.00
STORY5	FJIZ	121.7	40.0	0.00

STORY4				23.52
STORY3				38.61
STORY2				72.53
STORY1				169.70
STORY6				0.00
STORY5				0.00
STORY4	D4V	112.2	10.5	21.35
STORY3	P4Y	113.3	42.5	41.77
STORY2				55.46
STORY1				148.52
STORY6				0.00
STORY5				90.48
STORY4	P4X	198.3	74.4	174.71
STORY3	147	190.5	/4.4	255.05
STORY2				323.87
STORY1				325.41
STORY6				0.00
STORY5				0.00
STORY4	P5X1	57.6	21.6	0.00
STORY3	1 3711	57.0	21.0	0.00
STORY2				0.00
STORY1				0.00
STORY6				0.00
STORY5				0.00
STORY4	P5X2	53.3	20.0	0.00
STORY3		0010	2010	0.00
STORY2				0.00
STORY1				0.00
STORY6				0.00
STORY5				0.00
STORY4	P5Y1	57.6	21.6	0.00
STORY3				0.00
STORY2				0.00
STORY1				0.00
STORY6				0.00
STORY5 STORY4				0.00
STOR 14 STOR Y3	P5Y2	53.3	20.0	0.00
STORY2				0.00
STOR 12 STOR Y1				0.00
STOR 11 STOR Y6	P5Y3	79.9	30.0	0.00
- <u>510K10</u>	1313	17.7	30.0	0.00

STORY5				0.00
STORY4				0.00
STORY3				16.21
STORY2				24.81
STORY1				42.30
STORY6				0.00
STORY5				84.04
STORY4	P5Y4	106.0	39.7	159.62
STORY3	1314	100.0	39.1	248.18
STORY2				297.12
STORY1				199.32

Table	AH.11, Pa	rt III of #3 She	ear Hoop F	Reinforcement	Design: Spacin	g
Story	Pier	S _{max} (i ACI 318-11 §11.4.5.1, 11.4.5.3	n) ACI 318-11 §14.3.5	S _{design} (in) ACI 318-11 §11.4.7.2	A _{v,min} (in ²) ACI 318-11 §11.4.6.3	S _{actual} (in)
STORY6		24		N/A	0.120	18.0
STORY5		24		N/A	0.120	18.0
STORY4	P1X	24		37.49	0.120	18.0
STORY3	ГIЛ	24		22.86	0.120	18.0
STORY2		24		16.54	0.110	16.0
STORY1		24		13.83	0.092	13.0
STORY6		24		N/A	0.120	18.0
STORY5		24		25.97	0.120	18.0
STORY4	$\mathbf{D}1\mathbf{V}$	24		14.73	0.098	14.0
STORY3	PII	24		10.23	0.068	10.0
STORY2	P1Y -	24		8.07	0.054	8.0
STORY1		12		6.46	0.043	6.0
STORY6		24	18	27.74	0.120	18.0
STORY5		24		14.45	0.096	14.0
STORY4	DAV	24		9.65	0.064	9.0
STORY3	P2 I	24		7.36	0.049	7.0
STORY2		12		6.02	0.040	6.0
STORY1		12		5.54	0.037	5.0
STORY6		24		N/A	0.120	18.0
STORY5		24		N/A	0.120	18.0
STORY4	P2X	24		44.61	0.120	18.0
STORY3	Γ2A	24		27.52	0.120	18.0
STORY2		24		20.28	0.120	18.0
STORY1		24		16.33	0.109	16.0
STORY6	P3X	24		N/A	0.120	18.0

STORY5		24		N/A	0.120	18.0
STORY4		24		N/A	0.120	18.0
STORY3		24		57.26	0.120	18.0
STORY2		24		26.32	0.120	18.0
STORY1		24		17.14	0.114	17.0
STORY6		24		N/A	0.120	18.0
STORY5		24		N/A	0.120	18.0
STORY4	Dava	24		70.93	0.120	18.0
STORY3	P3Y2	24		43.22	0.120	18.0
STORY2		24		23.01	0.120	18.0
STORY1		24		9.83	0.066	9.0
STORY6		24		N/A	0.120	18.0
STORY5		24		N/A	0.120	18.0
STORY4	$\mathbf{D}A\mathbf{V}$	24	1	69.25	0.120	18.0
STORY3	P4Y	24]	35.40	0.120	18.0
STORY2		24		26.66	0.120	18.0
STORY1		24		9.95	0.066	9.0
STORY6		24		N/A	0.120	18.0
STORY5		24		28.59	0.120	18.0
STORY4	$\mathbf{D}\mathbf{4V}$	24		14.80	0.099	14.0
STORY3	Γ4Λ	24		10.14	0.068	10.0
STORY2		24		7.99	0.053	7.0
STORY1	P4X	24		7.95	0.053	7.0
STORY6		18.6		N/A	0.174	18.0
STORY5		18.6		N/A	0.174	18.0
STORY4	P5X1	18.6		N/A	0.174	18.0
STORY3	1 5/11	18.6		N/A	0.174	18.0
STORY2		18.6		N/A	0.174	18.0
STORY1		18.6		N/A	0.174	18.0
STORY6		17.2		N/A	0.167	17.0
STORY5		17.2		N/A	0.167	17.0
STORY4	P5X2	17.2		N/A	0.167	17.0
STORY3	1 5/12	17.2		N/A	0.167	17.0
STORY2		17.2		N/A	0.167	17.0
STORY1		17.2		N/A	0.167	17.0
STORY6		18.6		N/A	0.174	18.0
STORY5		18.6		N/A	0.174	18.0
STORY4	P5Y1	18.6		N/A	0.174	18.0
STORY3	1.711	18.6		N/A	0.174	18.0
STORY2		18.6		N/A	0.174	18.0
STORY1		18.6		N/A	0.174	18.0

STORY6		17.2	N/A	0.167	17.0
STORY5		17.2	N/A	0.167	17.0
STORY4	P5Y2	17.2	N/A	0.167	17.0
STORY3	P312	17.2	N/A	0.167	17.0
STORY2		17.2	N/A	0.167	17.0
STORY1		17.2	N/A	0.167	17.0
STORY6		24	N/A	0.174	18.0
STORY5		24	N/A	0.174	18.0
STORY4	P5Y3	24	N/A	0.174	18.0
STORY3	P315	24	42.02	0.174	10.0
STORY2		24	27.46	0.174	10.0
STORY1		24	16.10	0.156	10.0
STORY6		24	N/A	0.174	18.0
STORY5		24	10.74	0.104	10.0
STORY4	P5Y4	24	5.66	0.055	5.0
STORY3	FJ14	12	3.64	0.035	3.0
STORY2		12	3.04	0.029	3.0
STORY1		24	4.53	0.044	4.0

Table AH.12,	, Part I of #3	Shear Hoop	Reinforce	ment De	sign: Requi	red Shear S	Strength
	Beam					V _{u,max}	(Kip)
Story	Spanning	Length	Thk	d (in)	f'c	Col.	2" From
Story	Between	(in)	(in)	u (III)	(Kip/in ²)	Face	Col.
	Piers						Face
STORY5	P5Y1			45.0		10.90	10.40
STORY3	+	7.250	10	45.0	6	17.28	16.49
STORY1	P5Y2			45.0		24.89	23.75
STORY5	P5Y3			45.0		44.66	40.55
STORY3	+	6.917	10	42.0	6	129.40	117.50
STORY1	P5Y4			39.0		271.13	246.20

Table AH.13, P	Part II of #3 Shear Hoop I	Reinforcement De	esign: Req. Steel S	Shear Resistance
Story	Beam Spanning Between Piers	V _c (Kip) ACI 318-11 §11.4.6.1	ΦV _{c,n} (Kip) ACI 318-11 §11.2.1.1	V _{s,req} (Kip) ACI 318-11 § 11.4.7.2
STORY5		69.71	26.14	0.00
STORY3	P5Y1 + P5Y2	69.71	26.14	0.00
STORY1		69.71	26.14	0.00
STORY5	P5Y3 + P5Y4	69.71	26.14	18.92

STORY3	65.07	24.40	65.49
STORY1	60.42	22.66	213.14

Table	AH.14, Part III of #3 Sho	ear Hoop Reinforcem	nent Design: Space	cing
Story	Beam Spanning Between Piers	S _{max} (in) ACI 318-11 §11.4.5.1,11.4.5.3	S _{design} (in) ACI 318-11 §11.4.7.2	S _{actual} (in)
STORY5		22.50	N/A	18.00
STORY3	P5Y1 + P5Y2	22.50	N/A	18.00
STORY1		22.50	N/A	18.00
STORY5		22.50	31.40	18.00
STORY3	P5Y3 + P5Y4	21.00	8.50	8.50
STORY1		9.75	2.50	2.50

(c) Servicability and Irregularity Check

	Table .	AH.15, Wind Induce	d Displacen	nents at Roc	of	
Story	Corner Point	Load Case	UX	UY	RX	RY
	1	WINDDX	0.69	-0.15	0	0
	1	WINDDY	-0.24	0.82	0	0
	1	WINDT1DX	0.49	-0.17	0	0
	1	WINDT1DY	-0.33	0.28	0	0
	1	WINDT2	0.07	-0.02	0	0
	1	WINDDXY	0.33	0.51	0	0
	1	WINDT1DNX	0.54	-0.04	0	0
6	1	WINDT1DNY	-0.03	0.95	0	0
0	6	WINDDX	0.69	-0.08	0.01	0
	6	WINDDY	-0.24	0.62	-0.19	0
	6	WINDT1DX	0.49	0	-0.01	0
	6	WINDT1DY	-0.33	0.77	-0.23	0
	6	WINDT2	0.07	0.67	-0.2	0
	6	WINDDXY	0.33	0.4	-0.14	0
	6	WINDT1DNX	0.54	-0.12	0.02	0
	6	WINDT1DNY	-0.03	0.16	-0.06	0

3	Z3 DR1FT-Y 0.000124 0.000122 0.0000122 0.0000056 0.0000056		 Kin-th
	VT OBJECT 1 DRLFT-X DRLFT-X 0.000746 0.000701 0.000612 0.000612 0.000000		<
	IFTS AT POIN DISP-Y -0.007538 -0.004120 -0.004120 -0.001228 -0.000310		
•	T S AND DR DISP-X 0.049129 0.036688 0.038688 0.018500 0.018500 0.003468	Shape (WINDDX)	Start Animation
	Matrix Displate <	3-D View Deformed Shape (WINDDX)	
y Design <u>Options</u> <u>Help</u>)			
File Edit <u>View Define Draw Select Assign Analyze Display</u> 	14 Plan View - STORYG - Elevation 86 Deformed Shape (QUAKEX)		Right Click on any Point for displacement values

	×	BRIFT-Y 0.000120 0.000109 0.000003 0.000003 0.000000		 Kip-ft →
	T OBJECT 6	DR1FT-X 0.000746 0.000741 0.000701 0.000612 0.000662 0.000662 0.000600		<< >> GLOBAL
	FTS AT POIN	DISP-Y -0.007792 -0.006109 -0.004465 -0.002440 -0.001633 -0.000617		
	'S AND DRI	DISF-X 0.049129 0.038688 0.038688 0.038688 0.038689 0.03868 0.00939 0.003468	hape (WINDDX)	Start Animation
6 ☆ - % 國 @ % - 1 □ □ = = ≪	<pre>with the second of the second of the second of the second se</pre>	STORY STORY 6 STORY 4 STORY 4 STORY 2 STORY 2 STORY 1	3.D View Deformed Shape (WINDDX)	
× 4 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −				
∑ 4				
Design				
Analyze Display	e (QUAKEX)			
Assign	5 Deformed Shap			
a 💊 🕥	376 - Elevation 8			placement values
t <u>V</u> iew ■ ≪ E	🄐 Plan View - STORY6 - Elevation 86 Deformed Shape (QUAKEX)			Right Click on any Point for displacement values
Eile Edit <u>View Define Draw Select Assign Analyze Disp</u> D.22* 팀 영 당 Analyze / 圖 + 큐· ᄕ 요 요 요 / X 한 과 1 3: + 또 돼 오 D 1114 만 즈 페 쀼 e? +	L		Ⅲ ■ ▶ ↓ ┃ ≒ ≝ % 爰 ↓ ┃ 주 エ ※ 주 エ ■ ↓	Right Click

	×	DRIFT-Y 0.000241 0.0002345 0.0002345 0.000210 0.000156 0.000156		♦ Kip-ft ♦
	IT OBJECT 1	DRLFT-X 0.000143 0.000136 0.000123 0.000123 0.00017 0.000077 0.000007		<< >> GLOBAL
	DRIFTS AT POINT	DISP-Y 0.015313 0.012944 0.005215 0.006215 0.006215 0.001090		
	AND	DISP-X -0.008737 -0.006741 -0.004844 -0.003126 -0.003126 -0.003126	Shape (WINDDX)	Start Animation
6 ☆ · × ■ 0 % • ⊡ □ = ≣ ≪	🔐 DISPLACEMENTS	File STORY STORY5 STORY5 STORY3 STORY2 STORY1 STORY1	3-D View Deformed Shape (WINDDX)	Start
			¢ ©=1 ©=1	
· ♥ 🛛 🖉 🖉	0			
□reip				
Design Options) [11] 3-4 Pi윢 elੳ : + 11 + 〒 +				
Uispiay A A A A	UAKEY)			
Assign Analyze	ormed Shape (Q			
	🎎 Plan View - STORV6 - Elevation 86 Deformed Shape (QUAKEV)			ement values
Eile Eant Yrew Define Draw [1] 24 월 14 18 19 24 1/ [X 추 25 44 4] 16 14 24	View - STORY6 -			Right Click on any Point for displacement values
Elle Edit V X (*) X X (*) X	L		□ ■ ▶ ↓ 号恕兮嫠 ↓ 干工 寒干工 ■ ↓	t Click on any

Thaison Nguyen | Structural

		0.000329 0.000317 0.000246 0.000246 0.000190 0.000190		 Kip-ft
	IT OBJECT 6 DRIFT-X	0.000143 0.000136 0.000123 0.000102 0.000077 0.000000		< >> GLOBAL
	DRIFTS AT POINT C DISP-Y	0.020898 0.012291 0.012291 0.01776 0.001776 0.0014330 0.001669		
년 · · · · · · · · · · · · · · · · · · ·	A N D DISP-1	-0.008737 -0.006741 -0.005444 -0.003126 -0.001692 -0.001610	Shape (WINDDX)	Start Animation
 ★ → ★ → <!--</td--><td>Laudia DISPLACEMENTS File story</td><td>STDRY6 STDRY5 STDRY3 STDRY3 STDRY3 STDRY1 STDRY1</td><td>MINDDV)</td><td></td>	Laudia DISPLACEMENTS File story	STDRY6 STDRY5 STDRY3 STDRY3 STDRY3 STDRY1 STDRY1	MINDDV)	
Design				
A <u>n</u> alyze Display D D O O O O	oe (QUAKEY)			
Assign ► □ ► □	6 Deformed Sha			
<u>View Define Draw Select</u> 1 상 명 > · · · · · · · · · · · · · · · ·	RY6 - Elevation 8			isplacement values
Eile Edit <u>V</u> iew <u>Define</u> Draw D ad E 영양 방 이 시 / X 한 라 3: 4,	🔐 Plan View - STORY6 - Elevation 86 Deformed Shape (QUAKEY)			Right Click on any Point for displacement values
	L			ight Click

Thaison Nguyen | Structural

Thaison 1	lguyen			Design I: TORSION IRREG.		
as	drift at a structure's two	nature's ends >	g. defines torsion 1.2 times the ave	al irreg. mage drift		
-						
5+059		in Long Direction rsion Ac.)	Ang Drift (Quake	e in Short Direction insion Ac.)		
	X	4	7	4		
2	0.000462	0.000070	0.000077	0.000173		
3	0.000612	0.000094	0.000102	0.000228		
4	0.000701	0.000111	0.000123	0.000264		
5	0.000741	0.000119	0.000136	0.000281		
6	0-000746	0.000122	0.000143	0.006285		
	ck Quake in Long	g Direction w/ Tor	sion Ac.			
1) 5	tory 2					
	1(0.000070)>0.	000073				
	0.00008 >0.0	000073 V, no to	rsion irreg.			
2)5	tory 3					
•	0.000113 > 0.0	00095 V , no ton	sion irreg.			
3) 54	tory 4					
1	2(0.000111) > 0.00 0.000133 > 0.00	0112 0112 / , no tors	ion image			
4) 5	tory 5					
	2 (0.000119) > 0.0	2012				
		10012 V, no torsion	irreg.			
5)	story 6					
1	.2(0.000122) > 0.0 0.000146 > 0.	00124 y, no tors	ion irreg.			
b) Che	eck Quake in sho	nt Direction w/	Torsion Ac.			
1)	itory 2					
	11	000 190				
-	1.2(0.000173) > 0	000 190 V, no to				

	Thaison Nguyen	Vesign L: TORSTON IRREG.								
		CHECK								
	2) Story 3									
0	1.2(0.000228) > 0.000246	1.2(0.000228) > 0.000246								
	0.000274 > 0.000246 V, no torsion Irreg.									
	11									
	3) Story 4									
	1.2(0.000264) > 0.000291									
	0.000317 > 0.000291 /, no to	sint Three								
		son sing.								
	4) Story 5									
5										
M	1.2(0.000281) > 0.000317									
W	0.000337 > 0.000317 V, no.	torsion Irreg.								
_CINAMA										
	5) Story 6									
	12/2									
	1.2(0.000285) > 0.000329	tant in the								
	0.000 342 > 0.000329 V, no	Torsion trieg.								
~										
(
	*									
_										

H.2 Re-Design II: Structural Lateral Resisting Tilt-Up Walls

H.2.1 Loads Applied

(a) Columns

Table AH.16, Lateral Load Applied							
Pier	Load Case	Flevel, I (Kip)					
Assembly		1	2	3	4	5	Roof
	WINDDX	25.01	23.97	28.71	29.39	31.36	27.53
	WINDDY	0.37	-1.9	-0.1	-0.5	-0.59	0.15
CS1P1 +	WINDT1DX	22.45	18.12	22.09	22.55	24.33	21.03
CS1P2 +	WINDT1DY	18.51	-0.82	2.52	1.93	3.24	2.85
CS2P1 +	WINDT2	36.18	13.19	19.25	19.07	21.79	18.69
CS2P2	WINDDXY	19.04	16.54	21.46	21.66	23.08	20.76
	WINDT1DNX	15.04	17.83	20.98	21.52	22.72	20.27
	WINDT1DNY	-17.91	-2.06	-2.65	-2.72	-4.11	-2.62
	WINDDX	30.1	24.5	27.05	28.68	28.65	35.27
	WINDDY	-0.31	1.84	0.12	0.5	0.58	-0.14
	WINDT1DX	18.84	18.25	19.72	21.01	20.7	26.05
CN3P1 + CN2P1 +	WINDT1DY	-18.62	0.88	-2.52	-1.94	-3.17	-2.9
CN2P1 + CN1P1	WINDT2	-5.36	14.18	12.11	13.6	12.03	16.57
	WINDDXY	22.34	19.76	20.37	21.9	21.91	26.35
	WINDT1DNX	26.31	18.51	20.84	22.04	22.27	26.84
	WINDT1DNY	18.15	1.88	2.69	2.7	4.04	2.69
	WINDDX	0.32	0.33	-0.7	-0.39	-0.82	1.54
CE4P1 +	WINDDY	61.62	62.03	65.79	68.83	70.20	99.72
CE5P1 + CE5P2 +	WINDT1DX	0.54	2.41	1.61	1.99	1.59	3.65
	WINDT1DY	47.52	56.62	59.17	62.04	62.77	90.21
CE5P3 +	WINDT2	36.44	47.33	48.56	51.21	51.33	74.9
CE5P4 + CE6P1	WINDDXY	46.44	46.78	48.82	51.33	52.04	75.95
CE6P1	WINDT1DNX	-0.07	-1.9	-2.64	-2.56	-2.85	-1.33
	WINDT1DNY	44.94	36.43	39.5	41.19	42.56	59.37
CW4P1 + CW5P1 +	WINDDX	-0.29	-0.36	0.72	0.37	0.84	-1.55
	WINDDY	61.28	60.73	65.67	68.31	70.26	99.46
	WINDT1DX	-0.51	-2.44	-1.57	-1.98	-1.62	-3.65
CW5P2 + CW5P3 +	WINDT1DY	44.86	35.33	39.45	40.8	42.53	59.23
CW5P4 +	WINDT2	32.92	21.56	25.41	25.94	27.58	37.22
CW6P1	WINDDXY	45.73	45.29	49.78	51.52	53.33	73.43
	WINDT1DNX	0.05	1.9	2.66	2.56	2.86	1.32

WINI	WINDT1DNY		55.81	59.05	61.66	62.87	89.96		
Table AH.17, Gravity Load on Piers									
Pier Type	Lateral Function (Y or N)		Maximum Dead Load (kip)		bad N	Maximum Live Load (kip)			
CE-1	N		84.97			39.67			
CE-2	Ν		290.89			134.24			
CE-3	Ν		441.14			199.56			
CE-4	Y		148.46			64.13			
CE-5	Y		204.16			92.96			
CE-6	Y		224.78			100.26			
CN-2	Y		125.03			56.62			
CN-3	Y		368.24			166.52			
CN-4	Y		378.57			170.75			
CS-1	Y		343.13			155.38			
CS-2	Y		607.68			266.88			

Table AH.18, Applied Gravity Loads									
Member Designation	Level		Concentrated	Distributed Gravity Load					
		Ι	Dead	Ι	Live	Dead	Live		
		Pos. (ft)	Mag. (Kip)	Pos. (ft)	Mag. (Kip)	(Kip/ft)	(Kip/ft)		
	1	0.92	116.07	0.92	55.18	0	0		
	2	0.92	115.04	0.92	57.93	0	0		
BLS2P2T1P2	3	0.92	111.56	0.92	57.28	0	0		
DLS2P211P2	4	0.92	108.66	0.92	57.20	0	0		
	5	0.92	108.49	0.92	57.28	0	0		
	6	0.92	113.72	0.92	14.55	0	0		
	1	9	37.61	9	18.21	0	0		
	2	9	35.82	9	18.33	0	0		
DI N1D1T2D1	3	9	34.52	9	18.01	0	0		
BLN1P1T2P1	4	9	33.62	9	18.03	0	0		
	5	9	33.75	9	18.00	0	0		
	6	9	34.13	9	4.54	0	0		
BLN2P1T3P1	1	6	38.87	6	18.78	0	0		
	2	6	35.90	6	18.28	0	0		
	3	6	32.07	6	16.60	0	0		
	4	6	31.24	6	16.64	0	0		

	5	6	31.53	6	16.59	0	0
	6	6	33.08	6	4.47	0	0
	1	0	0	0	0	0.81	0.41
	2	0	0	0	0	0.80	0.43
BLEW	3	0	0	0	0	0.78	0.43
DLEW	4	0	0	0	0	0.76	0.43
	5	0	0	0	0	0.76	0.43
	6	0	0	0	0	0.78	0.11

H.2.2 Design Loads and Limitations

(a) Columns

	Table AH.19, Base In-Plane Shear and Overturning										
Pier Assembly	Load Case	V _{base} (Kip)	M _{base} (Kip-ft)	Pier Assembly	Load Case	V _{base} (Kip)	M _{base} (Kip-ft)				
	WINDDX	165.9	8712.6		WINDDX	0.2	35.0				
	WINDDY	-2.5	-114.0	CE4P1 +	WINDDY	428.1	23364.0				
CS1P1 +	WINDT1DX	130.5	6743.0	CE5P1 +	WINDT1DX	11.7	695.5				
CS1P2 +	WINDT1DY	28.2	972.7	CE5P2 +	WINDT1DY	378.3	20938.2				
CS2P1 +	WINDT2	128.1	6103.8	CE5P3 + CE5P4 +	WINDT2	309.7	17246.9				
CS2P2	WINDDXY	122.5	6448.4		WINDDXY	321.3	17550.2				
	WINDT1DNX	118.3	6325.8	CE6P1	WINDT1DNX	-11.3	-642.3				
	WINDT1DNY -32 -1143.9			WINDT1DNY	263.9	14109.1					
	WINDDX	174.2	9166.2		WINDDX	-0.3	-35.1				
	WINDDY	2.5	114.2	CW4P1 +	WINDDY	425.7	23266.1				
	WINDT1DX	124.5	6665.9	CW5P1 +	WINDT1DX	-11.7	-695.8				
CN3P1 + CN2P1 +	WINDT1DY	-28.2	-972.5	CW5P2 +	WINDT1DY	262.2	14035.8				
CN2P1 + CN1P1	WINDT2	63.1	3952.4	CW5P3 +	WINDT2	170.6	8982.7				
	WINDDXY	132.6	6960.3	CW5P4 +	WINDDXY	319.0	17423.6				
	WINDT1DNX	136.8	7083.2	CW6P1	WINDT1DNX	11.3	642.7				
	WINDT1DNY	32.1	1143.9		WINDT1DNY	376.3	20864.4				

	Table AH.20, Maximum Factored In-Plane Shear and Moments									
Pier	Floor Level	Width (in)	Maximum Shear (Kip)	Maximum Moment (Kip-ft)						
	1		0.00	0.00						
CE1	3	30	0.00	0.00						
	5		0.00	0.00						
CE2	1	27	0.00	0.00						

	3		0.00	0.00
	5		0.00	0.00
	1		0.00	0.00
CE3	3	28	0.00	0.00
	5		0.00	0.00
	1		113.53	604.48
CE4	3	46.5	69.63	325.70
	5		39.64	160.71
	1		196.30	706.72
CE5	3	43	172.80	604.79
	5		126.11	431.40
	1		69.77	339.22
CE6	3	37.5	57.11	243.60
	5		36.53	136.24
	1		101.52	647.88
CN2	3	76	59.03	255.86
	5		34.87	221.70
	1		86.67	416.40
CN3	3	57	59.38	269.97
	5		23.41	129.77
	1		90.99	639.01
CN4	3	72	31.49	157.91
	5		8.64	138.43
	1		47.77	167.66
CS1	3	27	41.56	162.33
	5		27.40	97.13
	1		121.65	867.33
CS2	3	87	82.57	401.42
	5		50.19	267.11

	Table AH.21, Axial Load									
Pier	Lateral Function (Y or N)	Maximum Dead Load (kip)	Maximum Live Load (kip)							
CE1	Ν	84.97	39.67							
CE2	Ν	290.89	134.24							
CE3	Ν	441.14	199.56							
CE4	Y	148.46	64.13							
CE5	Y	204.16	92.96							
CE6	Y	224.78	100.26							

CN2	Y	125.03	56.62
CN3	Y	368.24	166.52
CN4	Y	378.57	170.75
CS1	Y	343.13	155.38
CS2	Y	607.68	266.88

(b) Beams

Т	able AH	I.22, Max	imum Fa	ctored In-Pla	ne Shear and	Moments	
Beam	Floor Leve 1	Lengt h (ft)	Heigh t (in)	Maximum Shear (Kip)	Maximum Moment (Kip-ft)	Length- to-Height Ratio	Beam Type
	1	7.167	48	197.98	780.02	1.79	Deep
BLS2P2T1P2	3	7.167	36	133.66	472.54	2.39	Deep
	5	7.167	36	125.44	439.08	2.39	Deep
	1	14	48	107.46	550.95	3.50	Deep
BLN1P1T2P	3	14	36	66.21	298.06	4.67	
1	5	14	36	57.15	237.83	4.67	
	1	14	48	80.97	429.96	3.50	Deep
BLN2P1T3P 1	3	14	36	41.58	212.62	4.67	
1	5	14	36	30.17	133.15	4.67	
	1	6.667	48	279.89	925.03	1.67	Deep
BLEW	3	6.667	36	210.33	692.27	2.22	Deep
	5	6.667	36	189.46	622.56	2.22	Deep
	1		48	148.94	456.21		
BG	3		36	177.72	367.62		
	5		36	159.64	371.37		

H.2.3 Structural Tilt-Up Wall Design

(a) Columns

Note: It was determined that loads acting on the tilt-up walls during construction were much greater than during full occupancy. As a result the column design by RAM Elements wasn't used, because the software doesn't consider loads during the lifting process. The design done in Microsoft Excel and by RAM Elements – in this section – are for comparision to show the significant effect of the lifting process. Actual design of columns in the tilt-up wall can be found in Appendix I.

Table AH.23, Pier Shear Reinforcement Design (Part 1)

Story	Pier	Length (in)	Thk (in)	d (in)	f [°] _c (Kip/in ²)	F _{V-MAX} (Kip)
Story 6 Story 5 Story 4 Story 3 Story 2 Story 1	CE-4	46.5	10	38.40	6	4.64 9.65 7.50 8.39 5.15 32.22
Story 6 Story 5 Story 4 Story 3 Story 2 Story 1	CE-5	43	10	36.80	6	28.17 13.88 14.11 13.26 14.35 7.89
Story 6 Story 5 Story 4 Story 3 Story 2 Story 1	CE-6	37.5	10	29.60	6	4.06 6.68 6.00 6.16 6.26 11.32
Story 6 Story 5 Story 4 Story 3 Story 2 Story 1	CN-2	76	10	62.40	6	6.99 9.35 7.91 8.14 7.18 20.05
Story 6 Story 5 Story 4 Story 3 Story 2 Story 1	CN-3	57	10	48.00	6	21.43 9.68 12.76 10.57 10.04 -11.27
Story 6 Story 5 Story 4 Story 3 Story 2 Story 1	CN-4	72	10	60.00	6	6.85 9.62 8.01 8.34 7.28 21.32
Story 6 Story 5	CS-1	27	10	24.00	6	10.62 4.19

Story 4						5.41
Story 3						4.58
Story 2						2.15
Story 1						12.79
Story 6						3.24
Story 5						11.64
Story 4	CS-2 87	10	67.20	6	9.37	
Story 3	C3-2	07	10	07.20	0	9.88
Story 2						9.99
Story 1						25.84

	Table AH.24, Pier Shear Reinforcement Design (Part 2)									
Story	Pier	V _{u,max} (Kip)	V _c (Kip) ACI 318-11 §11.4.6.1	ΦV _{c,n} (Kip) ACI 318-11 §11.2.1.1	V _{s,req} (Kip) ACI 318-11 §11.4.7.2					
Story 6		2	4.64			0.00				
Story 5		14.29			0.00					
Story 4	CE-4	21.79	59.49	22.31	0.00					
Story 3	CL-4	30.18	J9.49	22.31	17.93					
Story 2		35.33			24.80					
Story 1		67.55			67.76					
Story 6		28.17			16.18					
Story 5		42.05			34.69					
Story 4	CE-5	56.16	57.01	21.38	53.50					
Story 3	CE-J	69.42	57.01	21.50	71.18					
Story 2		83.77			90.31					
Story 1		91.66			100.83					
Story 6		4.06		17.20	0.00					
Story 5		10.74			0.00					
Story 4	CE-6	16.74	45.86		0.00					
Story 3	CE-0	22.90	45.00		13.34					
Story 2		29.16			21.68					
Story 1		40.48			36.78					
Story 6		6.99			0.00					
Story 5		16.34			0.00					
Story 4	CN-2	24.25	96.67	36.25	0.00					
Story 3	C1N-2	32.39	20.07	50.25	0.00					
Story 2		39.57			16.51					
Story 1		59.62			43.24					
Story 6	CN-3	21.43	74.36	27.89	0.00					
Story 5	CIN-3	31.11	/4.50	21.07	13.59					

Story 4		43.87			30.61
Story 3		54.44			44.70
Story 2		64.48			58.09
Story 1		53.21			43.06
Story 6		6.85			0.00
Story 5		16.47			0.00
Story 4	CN-4	24.48	92.95	34.86	0.00
Story 3	CIN-4	32.82	92.95	54.00	0.00
Story 2		40.10			18.61
Story 1		61.42			47.04
Story 6		10.62			0.00
Story 5		14.81			5.80
Story 4	CS-1	20.22	37.18	13.94	13.02
Story 3	C3-1	24.80	57.10	13.94	19.12
Story 2		26.95			21.99
Story 1		39.74			39.04
Story 6		3.24			0.00
Story 5		14.88			0.00
Story 4	CS-2	24.25	104.11	39.04	0.00
Story 3		34.13	104.11	37.04	0.00
Story 2		44.12			19.79
Story 1		69.96			54.24

	Table AH.25, Pier Shear Reinforcement Design (Part 3)										
		S _{max} (ir	n)	S _{design} (in)							
Story	Pier	ACI 318-11	ACI 318-11	ACI 318-11 §	S _{actual} (in)						
		§ 11.4.5.1,11.4.5.3	§7.10.5.2	11.4.7.2							
Story 6		19.2		N/A	10.0						
Story 5		19.2		N/A	10.0						
Story 4	CE-4	19.2		N/A	10.0						
Story 3	CE-4	19.2		28.27	10.0						
Story 2		19.2		20.44	10.0						
Story 1		19.2		7.48	7.0						
Story 6		18.4	10	30.02	10.0						
Story 5		18.4	10	14.00	10.0						
Story 4	CE-5	18.4		9.08	9.0						
Story 3	CE-J	18.4		6.82	6.0						
Story 2		18.4		5.38	5.0						
Story 1		18.4		4.82	4.0						
Story 6	CE-6	14.8		N/A	10.0						
Story 5	CE-0	14.8		N/A	10.0						

Story 4 Story 314.8 14.8 N/A 10.0 29.30Story 214.8 18.0229.3010.0Story 114.818.0210.0Story 6 Story 524 N/A 10.0Story 4 Story 324 N/A 10.0Story 224 N/A 10.0Story 3 Story 124 N/A 10.0Story 4 Story 224 N/A 10.0Story 5 Story 124 N/A 10.0Story 6 Story 524 N/A 10.0Story 6 Story 524 N/A 10.0Story 7 Story 324 N/A 10.0Story 3 Story 224 10.0 14.17 Story 224 10.91 10.0
Story 214.818.0210.0Story 114.810.6210.0Story 624 N/A 10.0Story 524 N/A 10.0Story 424 N/A 10.0Story 324 N/A 10.0Story 224 N/A 10.0Story 124 N/A 10.0Story 524 49.89 10.0Story 624 19.05 10.0Story 524 46.61 10.0Story 424 20.70 10.0Story 324 14.17 10.0Story 224 10.91 10.0
Story 114.8Story 624Story 524Story 524Story 424Story 324Story 224N/A10.0Story 324Story 124Story 524Story 524Story 524Story 524Story 524Story 524Story 424Story 324Story 324Story 22410.0Story 12410.0Story 22410.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Story 5 24 N/A 10.0 Story 4 24 N/A 10.0 Story 3 24 N/A 10.0 Story 3 24 N/A 10.0 Story 2 24 N/A 10.0 Story 2 24 10.0 10.0 Story 1 24 19.05 10.0 Story 6 24 19.05 10.0 Story 5 24 46.61 10.0 Story 3 24 24 10.0 Story 3 24 10.01 10.0 Story 3 24 10.01 10.0 Story 2 24 10.91 10.0
Story 4 Story 3 CN-2 24 24 N/A 10.0 Story 3 24 N/A 10.0 Story 2 24 49.89 10.0 Story 1 24 19.05 10.0 Story 6 24 N/A 10.0 Story 5 24 19.05 10.0 Story 4 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 3 CN-2 24 N/A 10.0 Story 2 24 49.89 10.0 Story 1 24 19.05 10.0 Story 6 24 N/A 10.0 Story 5 24 19.05 10.0 Story 5 24 46.61 10.0 Story 3 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 3 24 N/A 10.0 Story 2 24 49.89 10.0 Story 1 24 19.05 10.0 Story 6 24 N/A 10.0 Story 5 24 46.61 10.0 Story 4 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 1 24 19.05 10.0 Story 6 24 N/A 10.0 Story 5 24 46.61 10.0 Story 4 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 6 24 N/A 10.0 Story 5 24 46.61 10.0 Story 4 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 5 24 46.61 10.0 Story 4 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 4 24 20.70 10.0 Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 3 24 14.17 10.0 Story 2 24 10.91 10.0
Story 1 24 14.71 10.0
Story 6 24 N/A 10.0
Story 5 24 N/A 10.0
Story 4 CN 4 24 N/A 10.0
Story 7 CN-4 24 N/A 10.0
Story 2 24 42.56 10.0
Story 1 24 16.84 10.0
Story 6 12 N/A 10.0
Story 5 12 54.58 10.0
Story 4 CS-1 12 24.34 10.0 10.0 10.0 10.0 10.0 10.0
Story 3 CS-1 12 16.57 10.0
Story 2 12 14.41 10.0
Story 1 12 8.11 8.0
Story 6 24 N/A 10.0
Story 5 24 N/A 10.0
Story 4 CS-2 24 N/A 10.0 N/A 10.0 10.
Story 3 CS-2 24 N/A 10.0
Story 2 24 44.83 10.0
Story 1 24 16.35 10.0

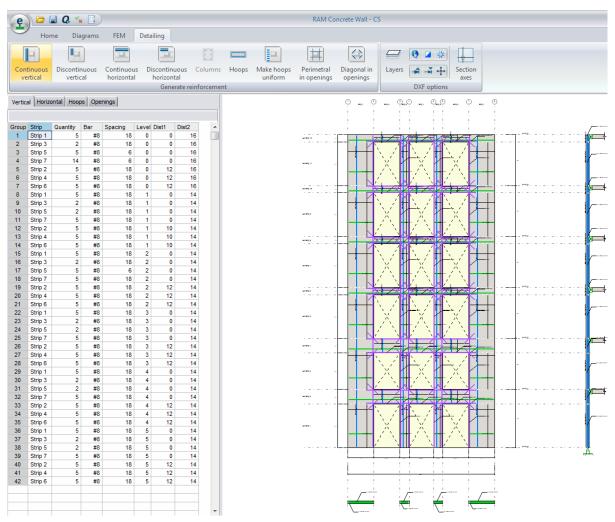


Figure AH.17A, Vertical Reinforcement Design for CS

ę) 🖻 🕻	IQ 🐪									RAM Co	ncrete	Wall - C	5					
	Hom	ie Dia	grams	FEM	Detai	ling													
											Ħ	<	\Rightarrow		😯 🖬 🐇				
	tinuous ertical	Discontin vertic		Continuous horizontal		contir		Columns	Hoops	Make hoops uniform	Perimetral in openings		onal in nings	Layers		Section axes			
						Gen	nerate n	einforcemen	t						DXF options				
Vertic	al Horizon	ntal Hoop	os Ope	nings								0			00_0	. O.	. •		
Group	H. Strip	Quantity	Bar	Spacing	Avie	Dist1	Diet2							1					
1	H. Strip 1	8	#8	Spacing 18	1	0	7	É.						<u> </u>		<u> </u>			
2	H. Strip 1	8	#8	18	3	0							1/5						
3	H. Strip 1	8	#8	18	5	0							4 H '	、 / 🖡	1 N 7 🗜 N	1			
4	H. Strip 1	8	#8	18	7	0	7						1	N 🖡		V /		-	1/
5	H. Strip 2	3	#8	18	1	0	40							A [L A 🛄 .	A 🗌			
6	H. Strip 3	7	#8	18	1	0	7												
7	H. Strip 3	7	#8	18	3	0					and the second sec						<u> </u>		
8	H. Strip 3	7	#8	18	5	0									化、乙化、				 · · · •
9	H. Strip 3	7	#8	18	7	0								S / 1					· · · · ·
	H. Strip 4	3	#8	18	1	0					-			X	1 × 1	X			1
11	H. Strip 5	8	#8 #8	18	1	0	7							/ N 🕇	++/ \ <mark>++</mark> +/	\			
	H. Strip 5 H. Strip 5	8	#0	18 18	5	0								. \ <u></u>		<u>``</u>			
14	H. Strip 5	8	#0	18	7	0	2.5				erege -		12						
	H. Strip 6	2	#8	18	1	0								/]	IN ZIN				
	H. Strip 7	8	#8	18	1	0	7							N 1		1	-+		
	H. Strip 7	8	#8	18	3	0	2.5				-			Ä 1	L Å 11	ÅΠ			Í
18	H. Strip 7	8	#8	18	5	0	2.5							C N 🚺					
19	H. Strip 7	8	#8	18	7	0	7								فكالا المحصوفية				 · 1
	H. Strip 8	2	#8	18	1	0							1 1/5				· · ·		 ··· •
	H. Strip 9	8	#8	18	1	0							 `	_/ 	+ N. Z + N.				
	H. Strip 9	8	#8	18	3	0					ware a		1	iyi 🖡		Y 🖊		-	4
	H. Strip 9	8	#8	18	5	0								/in 🖡	+/`\ <mark>+</mark> +/;	□ □			
	H. Strip 9 I. Strip 10	8	#8 #8	18 18	7	0	7 40							<u>```</u>		1			
25		2	#8	18	1	0	40							-4		-4			
20		8	#0	18	3	0													 - ·] <mark>.</mark>
28		8	#8	18	5	0								. / I	L. ALL	. / 1			
29		8	#8	18	7	0	7				-			XX		XI			1
	I. Strip 12	2	#8	18	1	0								Z 🔨 🕇	₩Z^\\ ₩₩Z	· · · ·			
																-Y			 J
											wrenge -								
															41. 44				
														11	là / Là				
											-			X	IX II	X			1
														/ N 🕂	₩ /`\ <mark>+</mark> ₩-2	1			
														<u>```</u>		N			
																			 ,A.

Figure AH.17B, Horizontal Reinforcement Design for CS

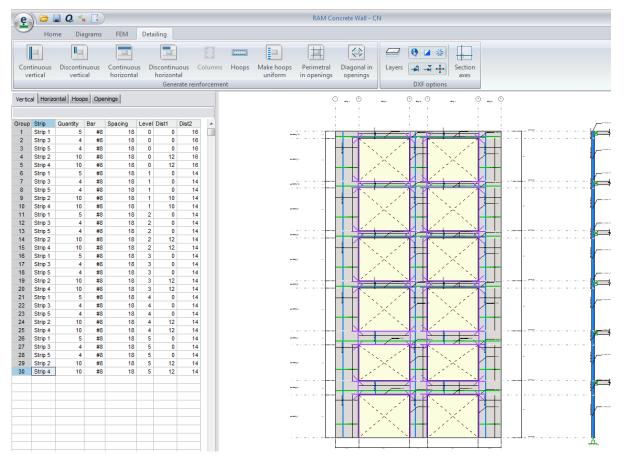


Figure AH.17C, Vertical Reinforcement Design for CN

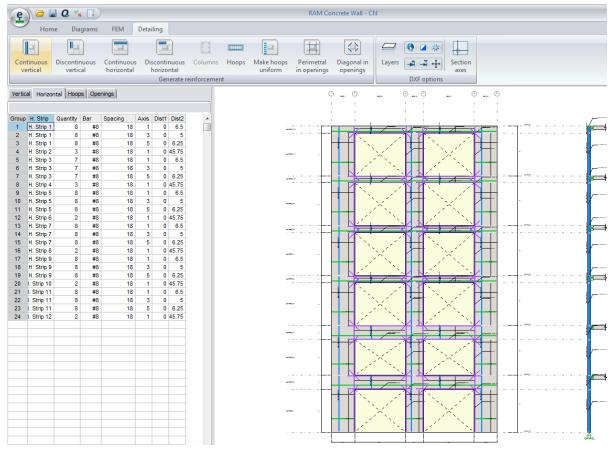


Figure AH.17D, Horizontal Reinforcement Design for CN

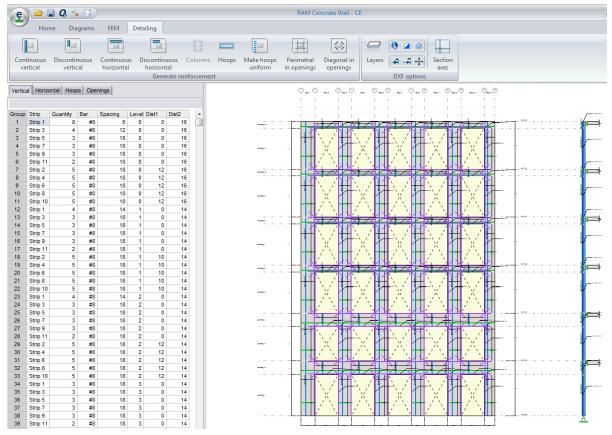


Figure AH.17E, Vertical Reinforcement (Part I) Design for CE

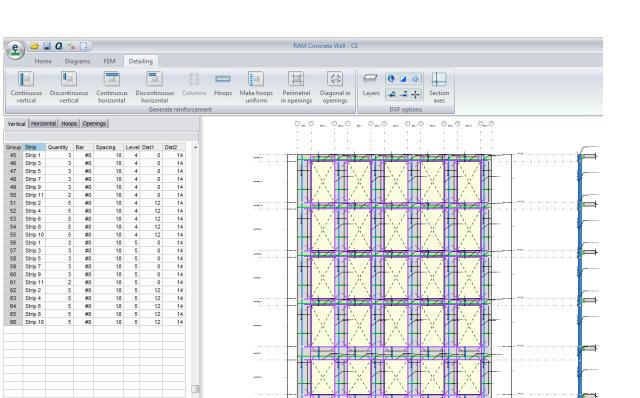


Figure AH.17F, Vertical Reinforcement (Part 2) Design for CE

Π

-

1

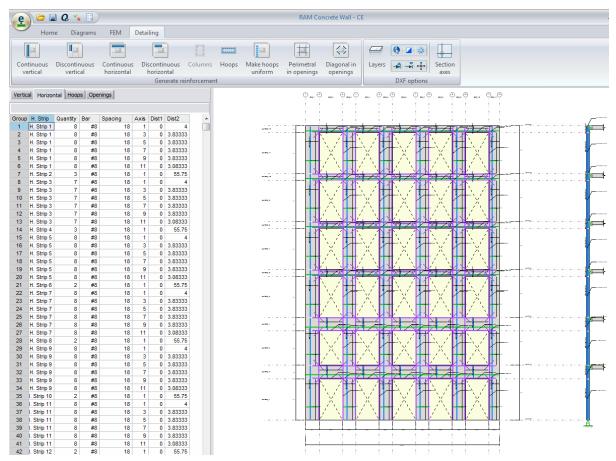


Figure AH.17G, Horizontal Reinforcement Design for CE

(b) Beams

Table AH.23, B	eam Flexur	al Design B	ased on spBeam and RA	AM Elements Output
Beam	Level	h (in)	Top Reinforcement	Bottom Reinforcement
	1	48	(10) #8	(10) #8
BLS2P2T1P2	3	36	(6) #8	(6) #8
	5	36	(6) #8	(6) #8
	1	48	(6) #8	(6) #8
BLN1P1T2P1	3	36	(2) #8	(2) #8
	5	36	(2) #8	(2) #8
	1	48	(6) #8	(6) #8
BLN2P1T3P1	3	36	(2) #8	(2) #8
	5	36	(2) #8	(2) #8
	1	48	(12) #8	(12) #8
BLEW	3	36	(8) #8	(8) #8
	5	36	(8) #8	(8) #8

(c) Servicability and Irregularity Check

	Table AH.24, Wind Induced DeflectionCorner PointLoad CaseUXUYRXRY1WINDDX0.560001WINDDY0.010.84001WINDT1DX0.41-0.03001WINDT1DY-0.060.5001WINDT20.250.32001WINDTX0.430.63001WINDT1DNX0.440.02001WINDT1DNX0.440.02001WINDT1DNX0.440.02006WINDDY0.010.81006WINDT1DX0.410.02006WINDT1DY-0.060.7300					
Story	Corner Point	Load Case	UX	UY	RX	RY
	1	WINDDX	0.56	0	0	0
	1	WINDDY	0.01	0.84	0	0
	1	WINDT1DX	0.41	-0.03	0	0
	1	WINDT1DY	-0.06	0.5	0	0
	1	WINDT2	0.25	0.32	0	0
	1	WINDDXY	0.43	0.63	0	0
	1	WINDT1DNX 0.44 0.02	0	0		
6	1	WINDT1DNY	0.07	0.75 0	0	
0	6	WINDDX	0.56	0	0	0
	6	WINDDY	0.01	0.81	0	0
	6	WINDT1DX	0.41	0.02	0	0
	6	WINDT1DY	-0.06	0.73	0	0
	6 WINDT2 6 WINDDXY	WINDT2	0.25	0.6	0	0
		WINDDXY	0.43	0.61	0	0
	6	WINDT1DNX	0.44	-0.02	0	0
	6	WINDT1DNY	0.07	0.49	0	0

et ásign Atalytæ Dieglay Deisjn Qations Help Atal Pr Jen Pr 1 - La - T - K - K - K - K - K - K - K - K - K		DINT OBJECT 1	DRIFT-X DRIFT-Y 0.000395 0.000004 0.000495 0.000003 0.000522 0.000015 0.000522 0.000016 0.000622 0.000016 0.000000 0.000000		<pre></pre>
et ásign Aghra Disglay Deisjn Qeion Help The Constrained Shape (QuAtS) 2 Deformed Shape (QUATS) 2	 ○ ○<th>🔐 DISPLACEMENTS AND DRIFTS AT POINT OBJECT</th><th>STORY DISP-X STURY6 0.534589 STURY5 0.468233 STURY3 0.385071 STURY3 0.175645 STURY1 0.071396</th><th>3-D View Deformed Shape (WINDDO</th><th>Start Animation</th>	🔐 DISPLACEMENTS AND DRIFTS AT POINT OBJECT	STORY DISP-X STURY6 0.534589 STURY5 0.468233 STURY3 0.385071 STURY3 0.175645 STURY1 0.071396	3-D View Deformed Shape (WINDDO	Start Animation
ect Assign Aualyze	lay Design Qptions Help ④ 〇 1 1 3-4 印格				
	aw Select Assign Analyze / 圖 · 큐· 더 @ @ 오 [컵 酏] 맡 그 ഞ 같 ^	evation 1032 Deformed Shape (QUAKE			Bight Click on any Point for displacement values

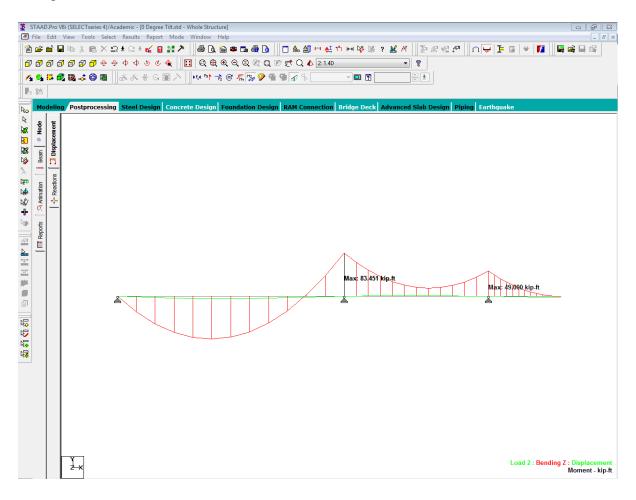
	DRIFT-Y 0.000004 0.000000 0.000015 0.000015 0.000015 0.000015		L Kipin
NT OBJECT 6	DRIFT-X 0.000395 0.000495 0.000592 0.000592 0.000592 0.000502 0.000502		
RIFTS AT POI	DISP-Y DISP-Y -0.011392 -0.010705 -0.007248 -0.007248 -0.00724751 -0.002247		Start Animation
· / 函 包 五 二 詳 夕 重 - .ACEMENTS AND DI	DISP-X DISP-X D.954589 0.95523 0.95526 0.175645 0.071396	ed Shape (WINDD)	Star
7 ∰ ₩ * *	File STORY S	ad 3-D View Deformed Shape (WINDDX)	Contraction Back
			-Ф
· [7]			
Design			-0
с С П			©
Hanger Analyze Ur - 큐 너희 🔎 🗩 🏵 - 발 <table-cell> 쾥 e? eformed Shape (QUAKE</table-cell>			, -© -⊙ -©
v			
Edir Jiew Denne Uraw gener Bangin Angalye Prog 솔 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Right Clack on any Point for displacement values
Edit <u>v</u> iew (과 집 (종 립 (하 월 141 + 1		\$\$ @	See 1

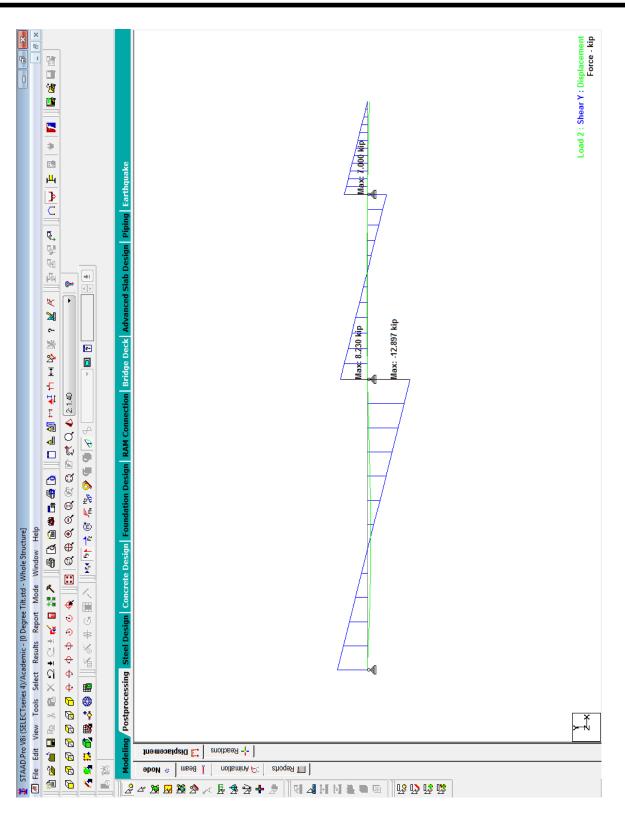
gr Glora He gl He Ke A He Ke Ke A He A A He A A He A A He A He A He A A He A A He He He He A A He He	
 Options Help 3d 0時 時 C 66 ◆ や 2 社 回 治・」 ロ 7:	
20 prions Help 34 며, 약 6.66 4 4 1 1 1 -	
2 2 </td <td></td>	
20 prions Help 34 며, 약 6.66 4 4 1 1 1 -	
2 Ptions Help 34 Rt 중 667 4 1 · 王 · 즈 · · · · · 2 · · · · · ·	
3 4 만 3 4 대 ○	
Analyze Display Prove Display hape (QUAKEY) hape (QUAKEY)	
tet Assign A → □→ □→ □→ □→ □→ □→ □→ □→ □→ □→ □→ □→ □→	
Edit Yiew Define Deav Select Assign Analyze Dig Edit Yiew Define Deav Select Assign Analyze Dig Edit Sign Sign Selection 103 Deformed Shape (QUAKEY) Prove STORY6 - Elevation 103 Deformed Shape (QUAKEY) Edit Sign Sign Selection 103 Deformed Shape (QUAKEY) Edit Sign Sign Sign Sign Sign Sign Sign Sign	accession of the second s
Edit View Define Dra Para El 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	Boide Dick on an Dick for dicked Secondard with the

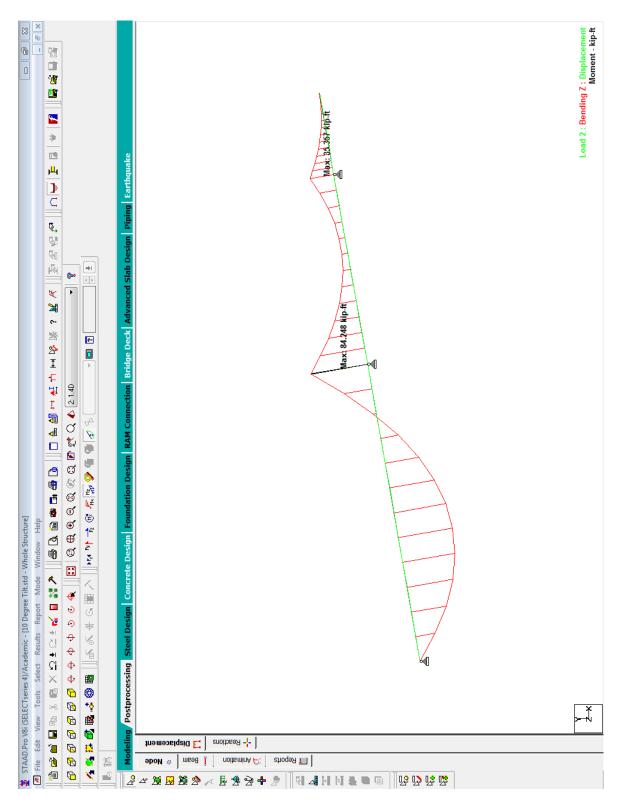
	×	DRLFT-Y 0.000191 0.000260 0.000318 0.000363 0.000363 0.000000		Kip-in
	NT OBJECT 6	DRLFT-X 0.00007 0.000010 0.000011 0.00012 0.00012 0.000012 0.00000		< >> GLOBAL
	RIFTS AT POIL	DISF-Y 0.310060 0.278011 0.234365 0.180977 0.121490 0.060567		Start Animation
	ENTS AND DF	DISP-X DISP-X -0.010569 -0.007803 -0.007803 -0.003916 -0.003916	ed Shape (WINDD)	Start
↓ ¥ *	L DISPLACEMENTS AND DRIFTS AT POINT OBJECT File	STORY STORY5 STORY5 STORY3 STORY3 STORY3 STORY3 STORY1	a 3-D View Deformed Shape (WINDDX)	
*				
ptions <u>n</u> ep 믉 량 (수 64 〒 ◆ <mark>丙</mark> ◆				
	-			
	d Shape (QUAKEY)			
				alues
Eunt Yew Denne Viaw Saect 2월 🛛 1월 🐨 19 🖉 🗐 🗐 2월 24 4일 - 🗍 1일 탁 🕿 🖄 🌆	STORY6 - Elevatio			Right Click on any Point for displacement values
	lan View -			n any Point.

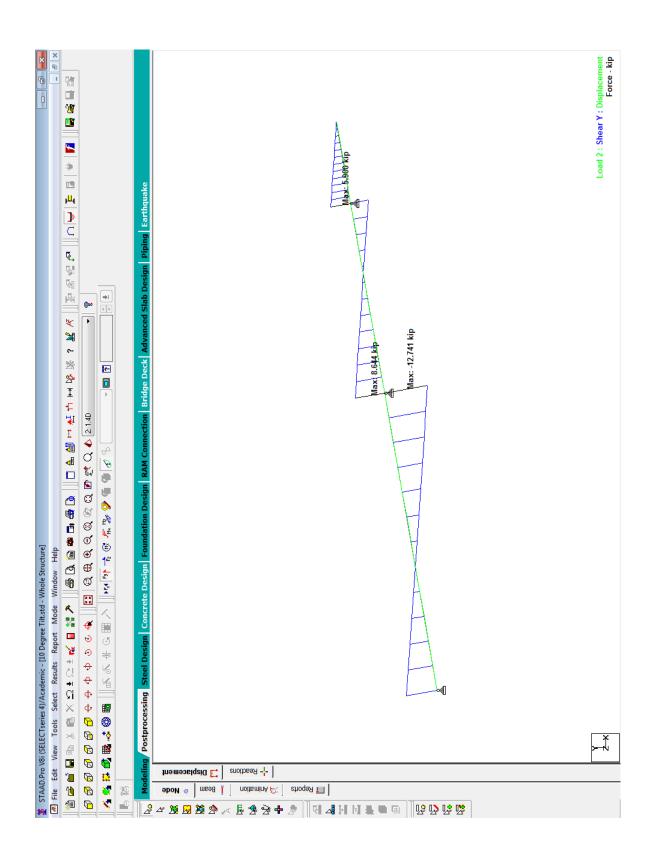
Thaison Nguyen | Structural

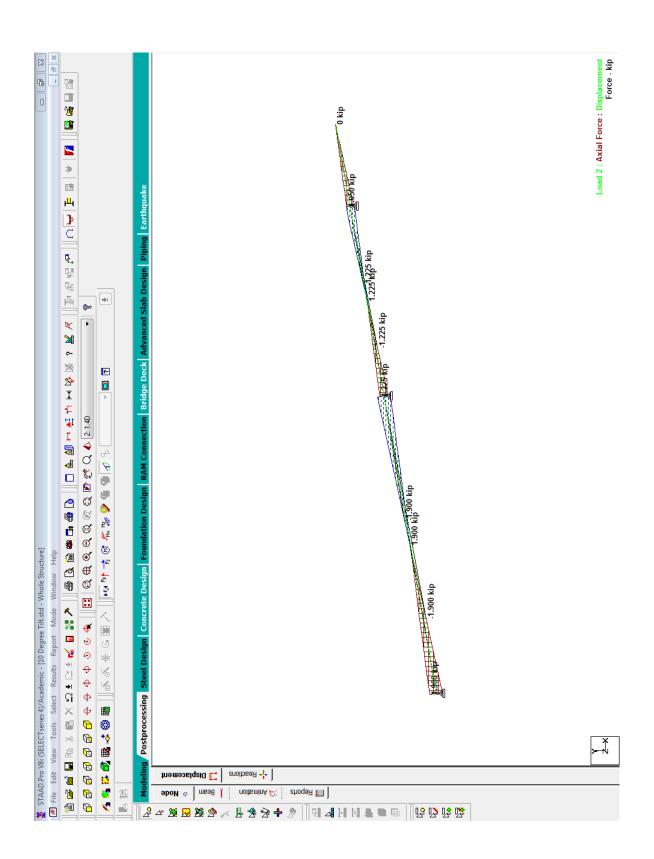
	Thaison Ng	AYEN		Desig	ANI: TORSIONIRREG. CHECK			
	as d	7-05 Table 12.3- rift at a stru of a structure	ture's ends > 1.2	defines torsional int times the average	reg.			
	Story		the in Long Direction	Average Drift (an	Torsion AC.)			
	-	I	1 ¥	I	4			
	2	0.000621	0.000015	0.000012	0.000340			
	3	0.000652	0.000015	0.000012	0.000331			
	4	0.000 595	0.000012	0.000011	0.000 296			
0	5	0.000 445	0.000008	0.000009	0.000242			
-ONEMA	6	0.000395	0.000004	0.000007	0.000177			
- A	1.							
~	a) Check	Quake in Long Di	rection w/ Torsion A	٤.				
	AAN BY	Visual inspection	there is no tors	ion liveg. at				
		,						
	b) Check	Quake in Short	Direction w/ Tors	ion Ac,				
~	1)story 2							
	1.2(0.00034) > 0.000	363 V, no torsion in	reg.				
	2) Story 3							
		0.000331) > 0.000 0.000397 > 0.000	354 054√, no torsion i	rreg.				
•	3) Stor	γч						
		0.000296) > 0.000 2.000355 > 0.000	318 318 / , no torsion in	reg.				
	4) Stor	y5						
		(0.000242) > 0.000 0.000290 > 0.000	0260 √, no torsion ly	reg,				
	5) 570	ry 6						
		00.00<(551000.0)>0.00	olal V, no tarsion i	rreg.				

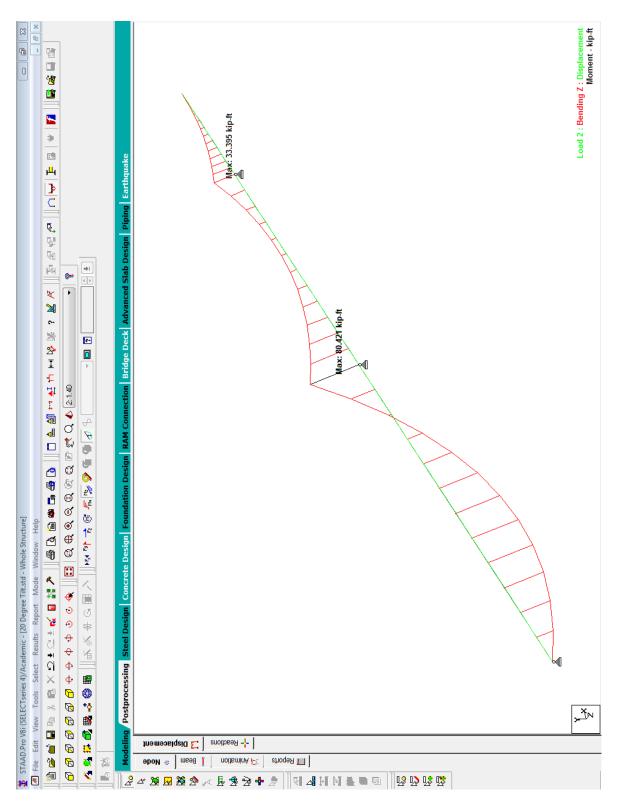

Appendix I: Gravity Design for Design II

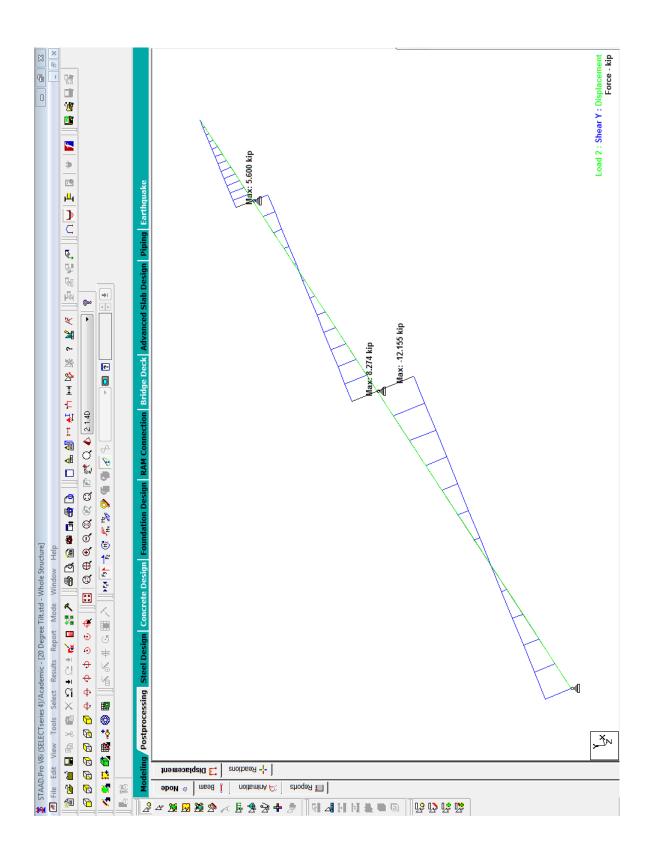

I.1 Structural Tilt-Up Wall

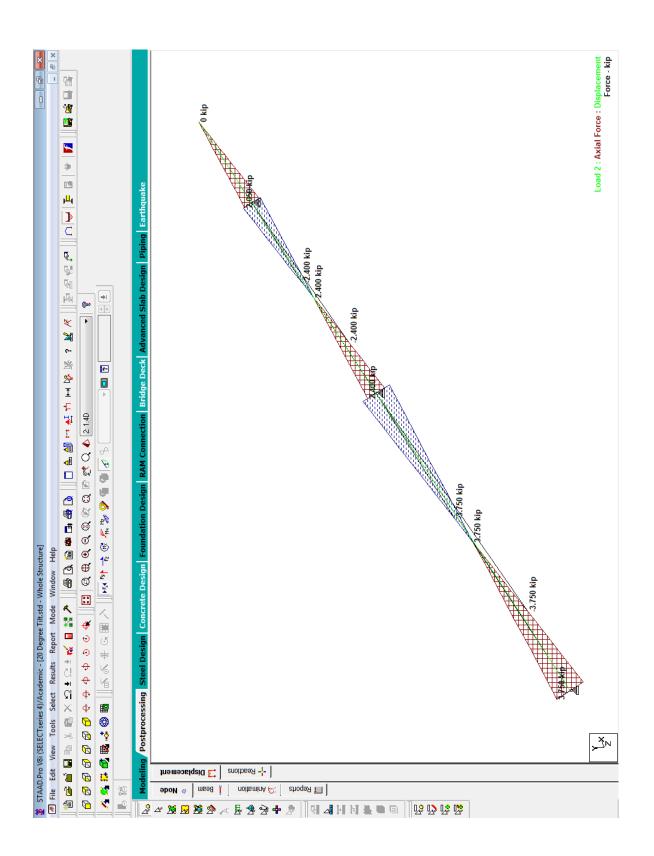

I.1.1 Loads Acting on Structural Tilt-Up Walls

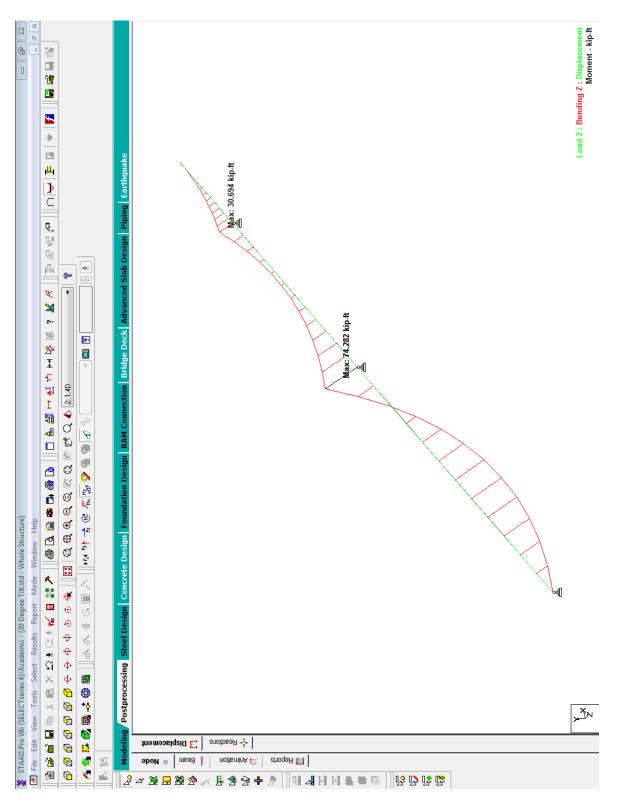

Note: Some gravity load data was combined with lateral load data, and can be found in Appendix H

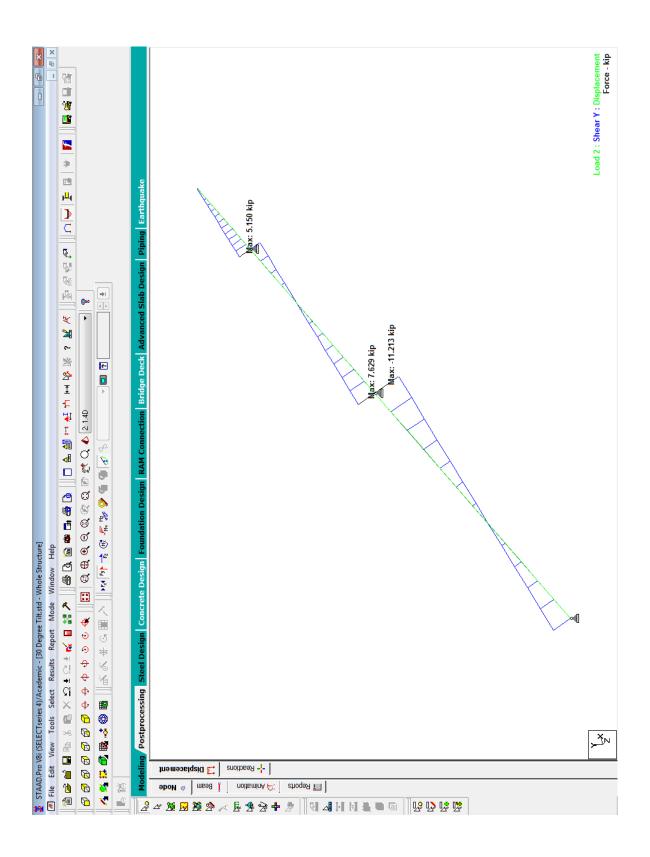

(a) STAAD Output

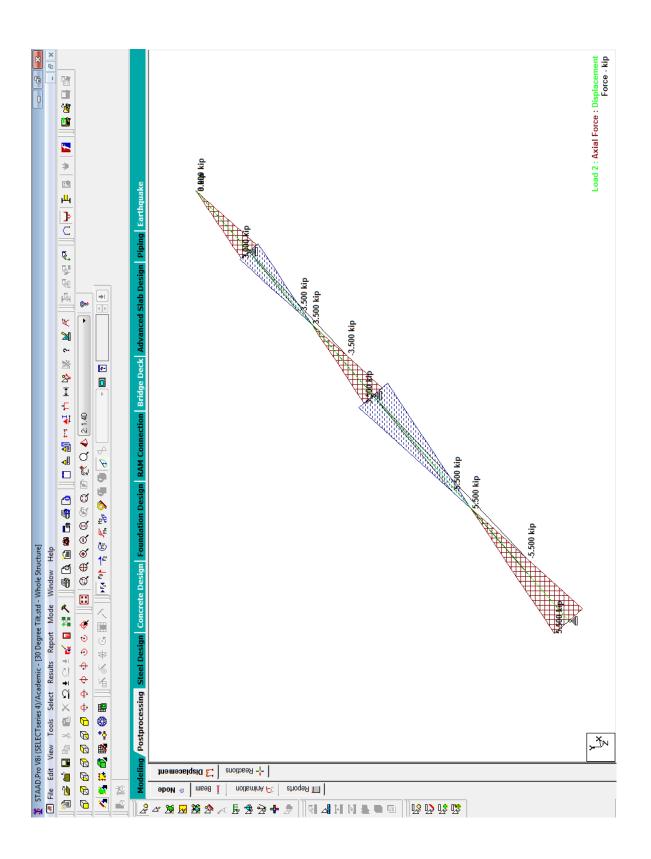


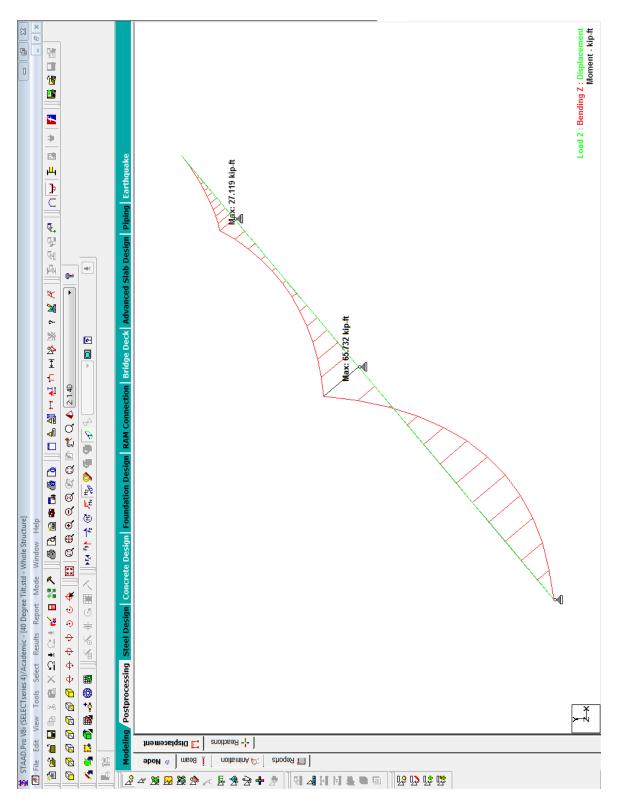


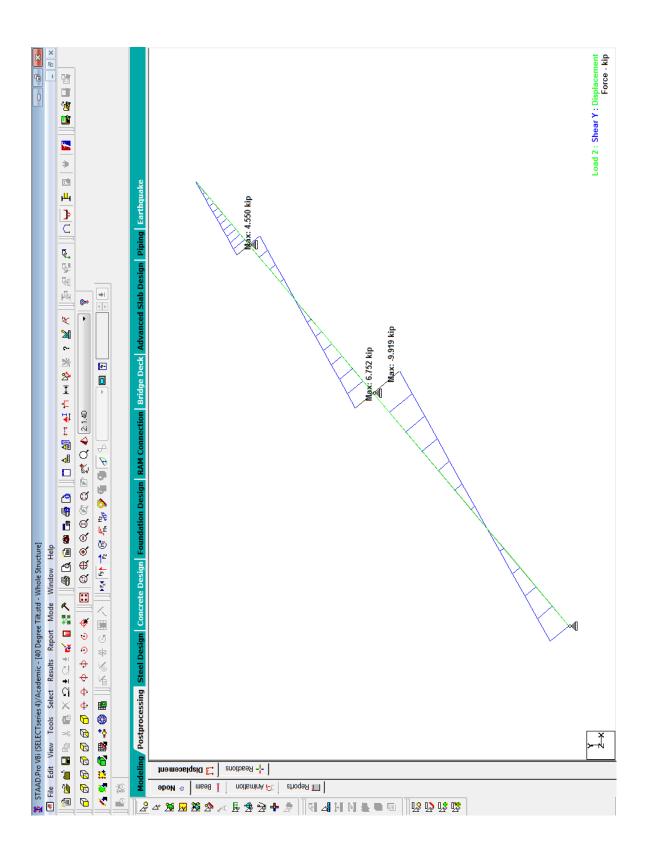


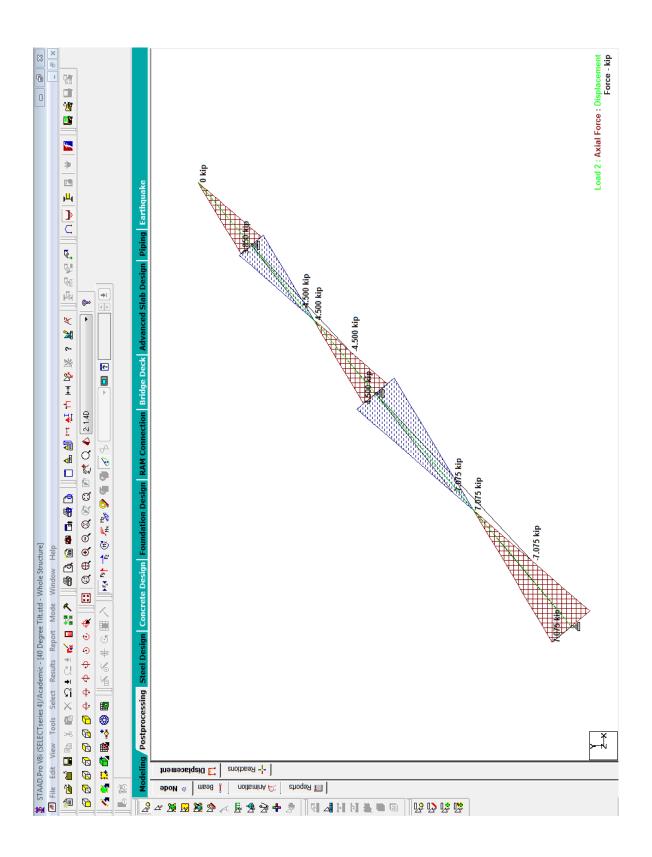


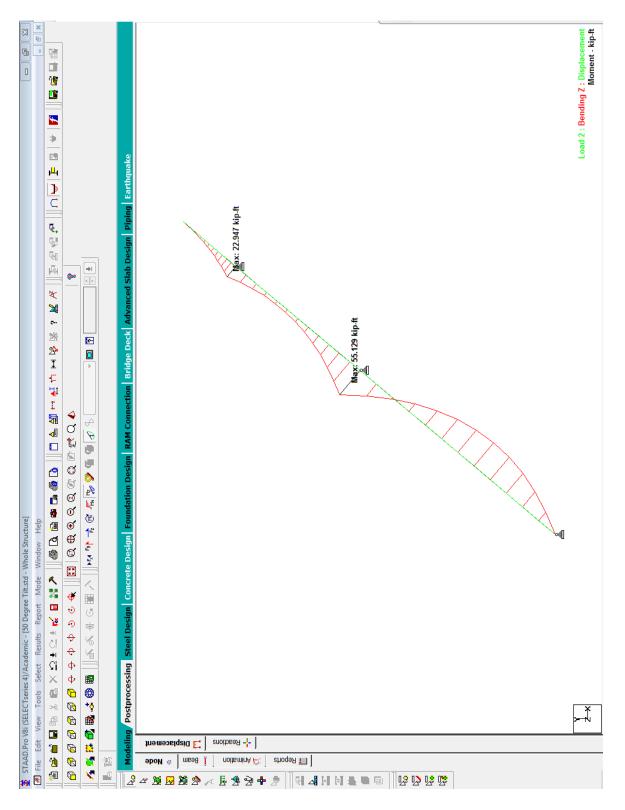


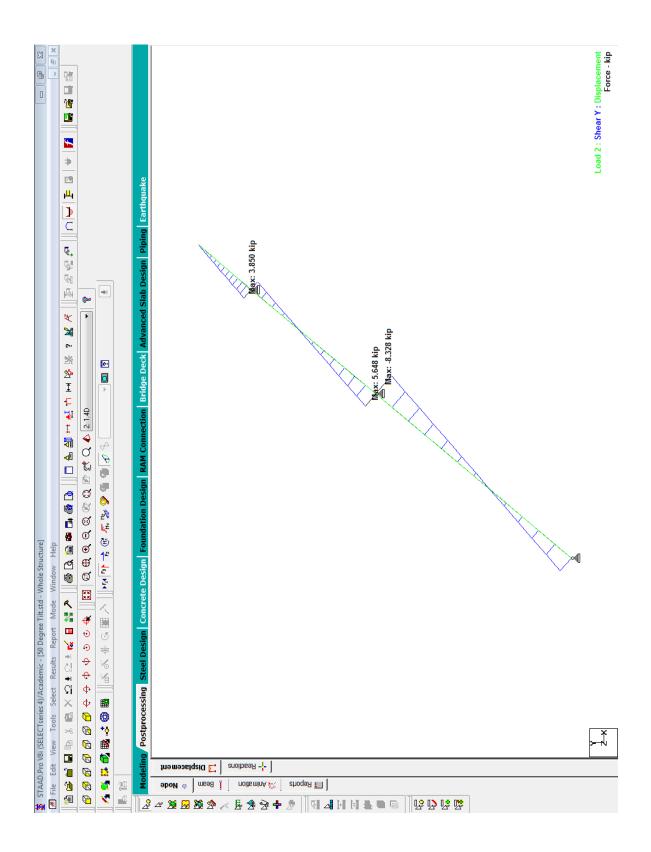


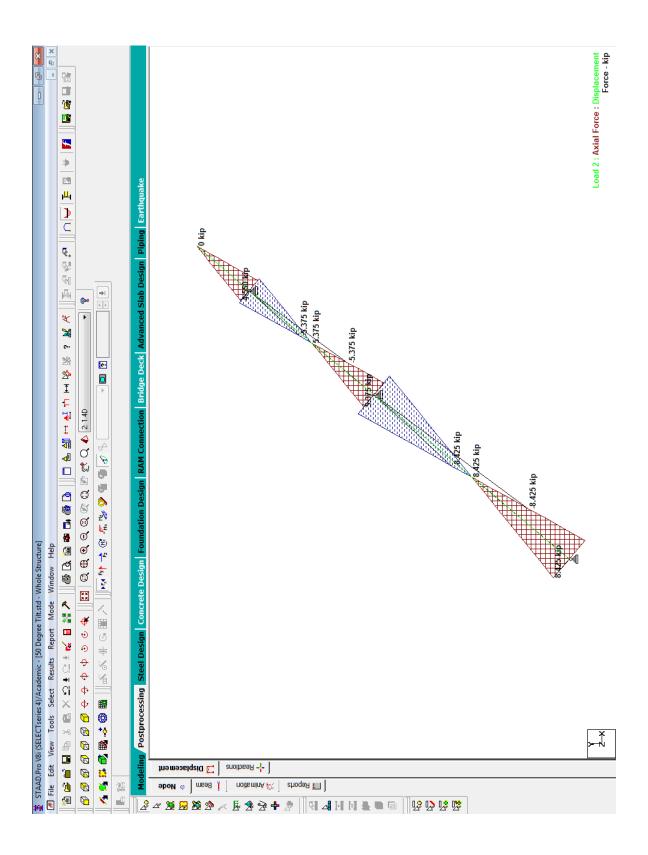


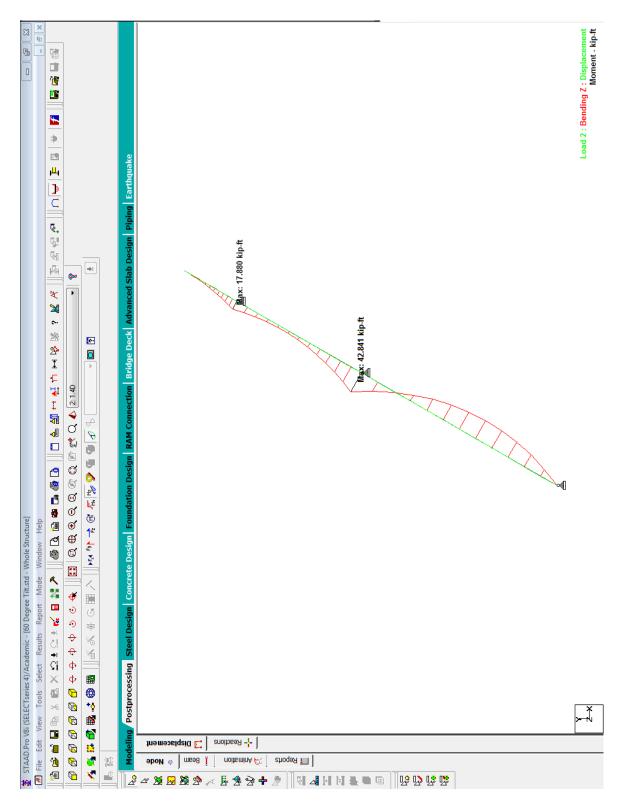


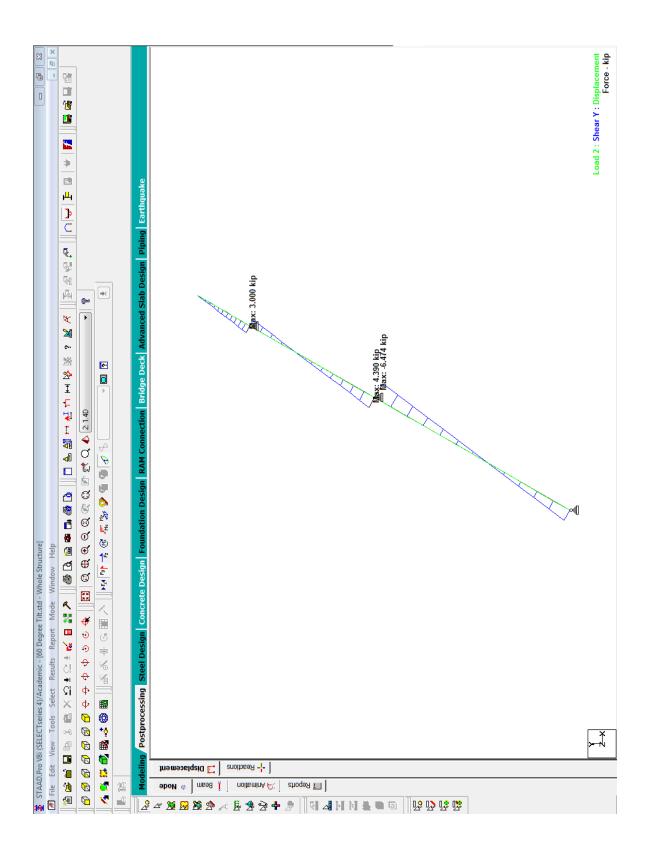


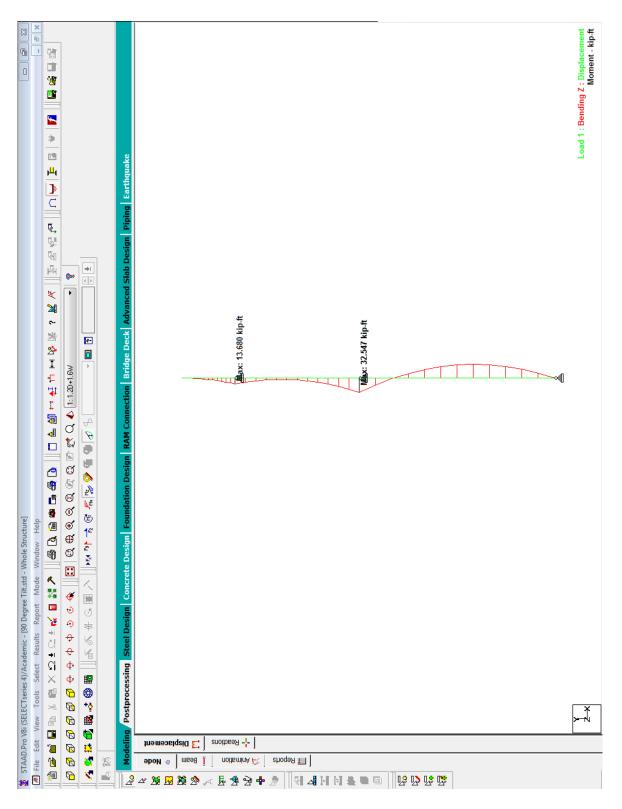


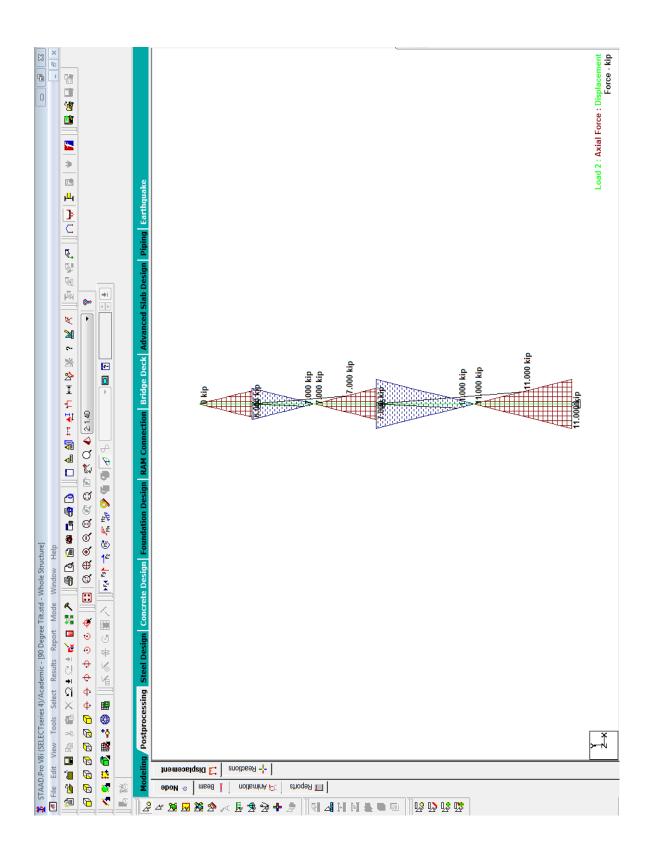




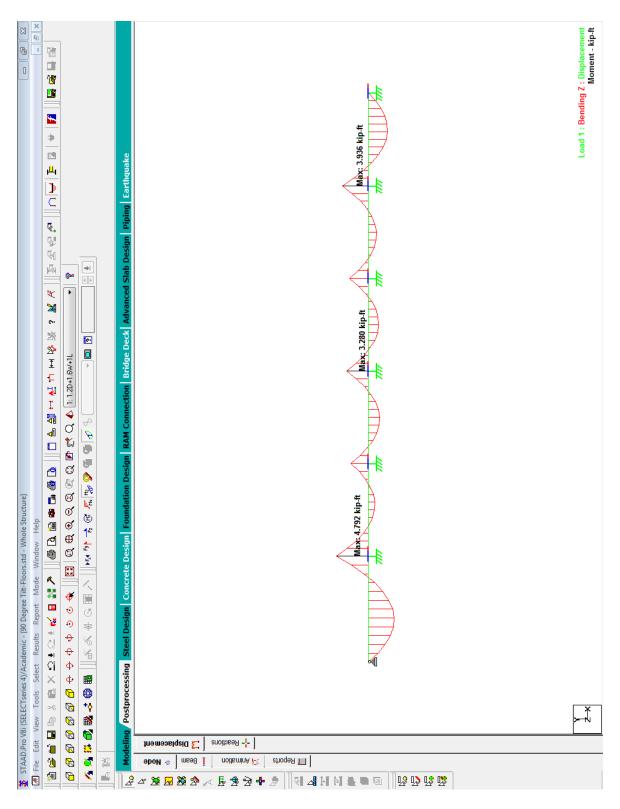








🏅 STAAD.Pro V8i (SELECTseries 4)/Academic - [60 Degree Titkstd - Whole Structure]	٩× Ω ± < 4 ■ ¥ > @ G @ @ @ @ @ M □ @ @ ∺ 4 + + A % % > K < ™ % ≪ A ∪ A + E @ + M B @ ⊟ @ ⊟ @	↔ ↔ ↔ ↔ ↔ ↔ ♣ 📗 @ ∰ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Image: A state of the state	Postprocessing Steel Design Concrete Design Foundation Design RAM Connection Bridge Deck Advanced Stab Design Piping Earthquake	encode and and and and and and and and and and	Load 2 : Axial Force : Displacement Force - kip
🕉 STAAD.Pro V8i (SELECTseries 4)/Academi 🌁 File Edit View Tools Select Res	Ω	+ + + − − − + + + − + − −		Modeling	Image: Second Secon	***


90-Degree Tilt

egree Tittstd - Whole Structure] port Mode Window Help 딥 값	gn Concrete Design Foundation Design RAM Connection Bridge Deck Advanced Slab Design Piping Earthquake		Load 1: Shear Y: Displacement Force - kip
	84 Modeling Postprocessing Steel Design	1 · · · · · · · · · · · · · · · · · · ·	XN

90 Degree Tilt w/ Floors

	ıke	14th	Load 1 : Axial Force : Displacement Force - kip
	k Advanced Slab Design Piping Earthqu		
icture]	Concrete Design Foundation Design RAM Connection Bridge Deck Advanced Slab Design Piping Earthquake		
🏂 STAAD.Pro V8i (SELECTseries 4)/Academic - [90 Degree Titt-Floors.std - Whole Structure]			
🍎 STAAD.Pro V8i (SELECTserie 🔊 Eilo Edit Vicco Toolo	Nodeling / Postprocessing Steel Design	Image: Second and the second and	×

I.1.2 Structural Tilt-Up Wall Design

(a) Columns

Table I.1, Tilt-Up Wall Panel Characteristics										
Structural Panel	Column Area (ft ²)	Total Panel Area (ft ²)	Total Panel-to-Column Area Ratio							
NN1	401.0	829.6	2.07							
NN2	401.0	829.6	2.07							
NN3	989.0	1349.0	1.36							
NN4	739.0	1293.8	1.75							
NN5	601.5	1216.9	2.02							
SN1	401.0	1093.8	2.73							
SN2	401.0	1135.5	2.85							
SN3	401.0	1127.7	2.81							
SN4	1060.5	1994.0	1.88							
SN5	1060.5	1918.8	1.81							
EN1	410.5	714.6	1.74							
EN2	401.0	669.9	1.67							
EN3	1003.4	1319.3	1.31							
EN4	945.4	1261.3	1.33							
WN1	945.4	1261.3	1.33							
WN2	1003.4	1319.3	1.31							
WN3	401.0	667.2	1.66							
WN4	401.0	724.8	1.81							

Table I.2, Unit Strip Dimensions					
Length (in)	12				
Width (in)	10				
Cover (in)	0.75				
Cover (in)	2				
d _{extreme} (in)	7.125				

Table I.3, Factored Loads (lb/ft ²) used in Unit Strip								
1.	1.4D							
150	175							

Table I.4, Load per Unit Strip (kip/ft)								
Total Panel -to-Column Load on Unit-Strip of Wall (Kip/ft)								
Area Ratio	1.20) + 1.6W +	1.0L	1.4D				
2.85	0.43	0.19	1.32	0.50				

Table I.5, Moment Magnification Factor										
Phase	I _{cr} (in ⁴) ACI 318-11 §10.10.4.1	P _{c,min} (kip) ACI 318-11 §10.10.6	Δ ACI 318-11 §10.10.7.4							
Construction		54.71	Varies							
Full Occupancy	350	413.73	1.04							

Table I.6, Part 1 of 60,000 lb/in ² Flexural Reinforcement Design w/o										
Compression Reinforcement per Unit Strip DesignTotal Panel $M_{u,p\Delta-max}$ (kip-ft) $P_{u,p\Delta-max}$ (kip) $V_{u,p\Delta-max}$ (kip)										
Total Panel -to-	Panel	δ	1.2D	(кір-іі)	P _{u,p∆-ma} 1.2D	_х (кір)	v _{u,p∆-m} 1.2D	_{ах} (кір)		
Column Area	Angle (°)	0	+	1.4D	+	1.4D	+	1.4D		
Ratio	()		1.6W		1.6W		1.6W			
	0	1.00		83.5				12.9		
	10	1.05		84.2		1.9		12.7		
	20	1.10		80.4		3.8		12.2		
2.85	30	1.15		74.3		5.5		11.2		
2.83	40	1.21		65.7		7.1		9.9		
	50	1.26		55.1		8.4		8.3		
	60	1.30		42.8		9.5		6.5		
	90	1.37	44.4		9.5	11.0	4.9			

Table I.7, Part 2 of 60,000 lb/in ² Flexural Reinforcement Design w/o Compression Reinforcement per Unit Strip Design										
Total Panel	el Flexural Reinforcement Requirement									
-to-		Dx	2 + Ex + F	= 0	A _{s,req}					
Column Area Ratio	d (in)	D	Е	F	(in^2)	Notes				
2.85	7.125	-0.49	7.125	-18.6	3.4	Requires doubly reinforced section to reduce congestion				

Table I.8, Part 1 of 75,000 lb/in ² Flexural Reinforcement Design w/o Compression Reinforcement per Unit Strip Design										
Total Panel	Donal		M _{u,p∆-max} (kip-ft)		P _{u,p∆-max} (kip)		V _{u,p∆-max} (kip)			
-to-	Panel Angle (°)	δ	1.2D		1.2D		1.2D			
Column Area		0	+	1.4D	+	1.4D	+	1.4D		
Ratio			1.6W		1.6W		1.6W			
	0	1.00		83.50				12.90		
	10	1.00		84.20		1.89		12.70		
2.85	20	1.00		80.40		3.80		12.20		
	30	1.00		74.30		5.48		11.19		
	40	1.00		65.70		7.10		9.88		

50	1.00		55.10		8.41		8.33
60	1.00		42.80		9.47		6.45
90	1.00	44.40		9.50	11.00	4.9	

Table I.9, Part 2 of 75,000 lb/in² Flexural Reinforcement Design w/oCompression Reinforcement per Unit Strip Design								
Total Panel]	Flexural R	einforcem	ent Require	ment		
-to-		Dx	$^2 + Ex + F$	= 0	A _{s,req}			
Column Area Ratio	d (in)	D	Е	F	(in^2)	Notes		
2.85	7.125	-0.61	7.125	-14.8	2.702	Requires doubly reinforced section to reduce congestion		

Table I.10, Part 1 of 60,000 lb/in ² Flexural Reinforcement Design w/ Compression Reinforce per Unit Strip							
Total Panel-to-Column	Tension Reinforcement			Compression Reinforcement			
Area Ratio	n	A_{s} (in ²)	d (in)	n	$A_{s}'(in^2)$	d' (in)	
	3	2.37		3	2.37		
2.85	4	3.16	7.125	3	2.37	1.625	
	4	3.16		4	3.16		

Table I.11, Part 2 of 60,000 lb/in ² Flexural Reinforcement Design w/ Compression Reinforce per Unit Strip								
Total Panel -to-Column	Dx ²	$Dx^2 + Ex + F = 0$			o (in)	0	ε _s '	
Area Ratio	D	Е	F	c (in)	a (in)	ε _s	ε _s	
		63.99	-335.06	2.09	1.57	0.0073	0.0007	
2.85	45.90	16.59	-335.06	2.53	1.90	0.0055	0.0011	
		85.32	-446.75	2.33	1.75	0.0062	0.0010	

Table I.12, Part 3 of 60,000 lb/in ² Flexural Reinforcement Design w/ Compression Reinforce per Unit Strip								
Total Panel -to-Column Area Ratio	M _n (kip-ft)	Φ	ΦM _n (kip-ft)					
	72.8	0.9	65.5					
2.85	94.5	0.9	85.1					
	97.8	0.9	88.0					

Table I.	Table I.13, Part 1 of 60,000 lb/in ² Shear Reinforcement Design per Unit Strip								
Total Panel	V _{u,p∆} (Kip)						V _c (Kip)		
-to- Column Area Ratio	Position (ft)	Magnitude	Length (ft)	Thk (in)	d (in)	f'c (lb/in ²)	ACI 318-11 § 11.4.6.1		
2.85	44	12.90	44	10	7.125	6000	13.2		

Table I.14, Part 2 d	Table I.14, Part 2 of 60,000 lb/in ² Shear Reinforcement Design per Unit Strip									
Total Panel -to-Column Area Ratio	ΦV _{c,n} (Kip) ACI 318-11 §11.2.1.1	V _{s,req} (Kip) ACI 318-11 §11.4.7.2								
2.85	4.97	3.95								

Table I.15, Part 3 of 60,000 lb/in ² Shear Reinforcement Design per Unit Strip								
Total Panel -to-Column Area Ratio	S _{max} (in	S _{design} (in)	c					
	ACI 318-11	ACI 318-11	ACI 318-11	S _{actual}				
	§11.4.5.1,11.4.5.3	§7.10.5.2	§11.4.7.2	(in)				
2.85	2-Y1	10	23.78	3.5				

Tab	le I.16, 60,000 lb/in ² Flexural Rebar Qu	antity per Unit Strip
Structural Panel	Total Panel-to-Column Area Ratio	Rebar Quantity per Unit Strip
NN1	2.07	2.258
NN2	2.07	2.258
NN3	1.36	1.627
NN4	1.75	2.089
NN5	2.02	2.204
SN1	2.73	3.044
SN2	2.85	3.190
SN3	2.81	3.145
SN4	1.88	2.243
SN5	1.81	2.159
EN1	1.74	2.077
EN2	1.67	1.993
EN3	1.31	1.569
EN4	1.33	1.592
WN1	1.33	1.592
WN2	1.31	1.569
WN3	1.66	1.985
WN4	1.81	2.156

Theyon Nguye

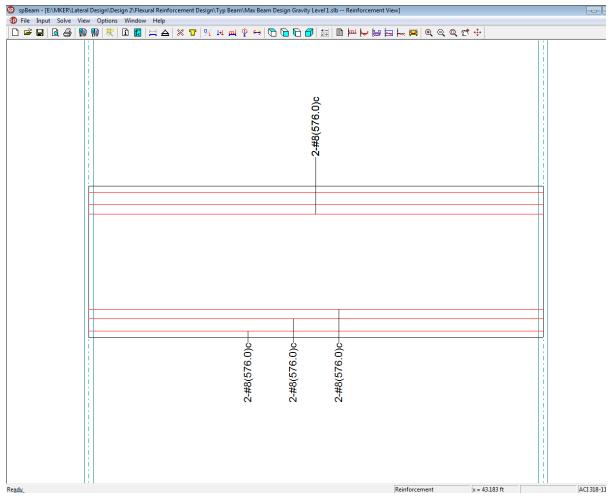
"CIMBAD"

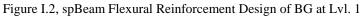
on Nguyen			Design II: SPOT CHECK UNIT STRI
Required Axial Phase	Pu(Kip)	Mulkip-AT)	
Construction	0	\$3.5	
Lonstruction	1.9	84.2	
Construction	3.8	80.4	
Construction	5.5	74.3	
Construction	7.1	65,7	
Construction	8.4	\$5.1	
Construction	9.5	42.8	
Construction	11.6	44.4	
Full Occupancy	312.9	5	
Po = 958.97 K	Dut-of-Plan Jgross - Adogram 12(10) - 8 < 0.77 11P	e)] + Asymetry 1] + 8(0,74)((0)	
0 Po = 623.3 kip			
0.89Po= 0.8(623 0.39Po= 498.78	3.3) Sip		
Balance Condi	ition .		

Ey = 0.00207

C = 0.003 (7.125) 0.003+0.00207 6 = 4.2"

*** Jaitally assume compression doesn't yield


 $\xi_{si,rowr1} = \frac{0.003}{4.2} (4.2 - 1.63)$ $\xi_{si,rowr1} = 0.00184 < 0.00207 \sqrt{, compression rebardoesn 4 yield}$


fin 1= 0.00188 + 24000 = 53.5 Ksi

	Thaison Nguyren	PESINGN I : SPOT CHECK UNIT STAIP
	Esi, row 2 - 0.003 (7.125-4.2) 4.2 2.5, row 2 = 0.00207	
	fsi, row 1=60 KS1	
	M My rours = 4(53.5) * (5 - 1.63) = 721.2 Kip.	~
	M No. 19472 - 4660) + (12 - 7.125) - 510.0 Kip-	
"OKIMA	$M_{b} = 0.955', b a [b/1 - c/2] + EM_{bi}, row, M_{b} = 0.855(b(12)(0.75 + 4.2)[5 - 4.2/2] + 721, M_{b} = 158 Kip - frM_{b} = 0.65(151)BM_{b} = 0.65(151)BM_{b} = 102.7 Kip - fr$	
	P = 135. 14 kip BP = 87.9 k.p.	
	MP.(Kip)	
~	400 (0, 623,3) 400 (0, 623,43) 400 (0, 403,44) Fo	
	LOS - (ADLA, PR.) (ADLA, PR.)	A) Mrn(xip-pr)
	10 40 60 80 100	
0		

(a) Beams

Table I.17, Beam Flexural Design Based on spBeam and RAM Elements Output									
Beam	Level	h (in)	Top Reinforcement	Bottom Reinforcement					
	1	48	(6) #8	(6) #8					
BG	3	36	(4) #8	(4) #8					
	5	36	(4) #8	(4) #8					

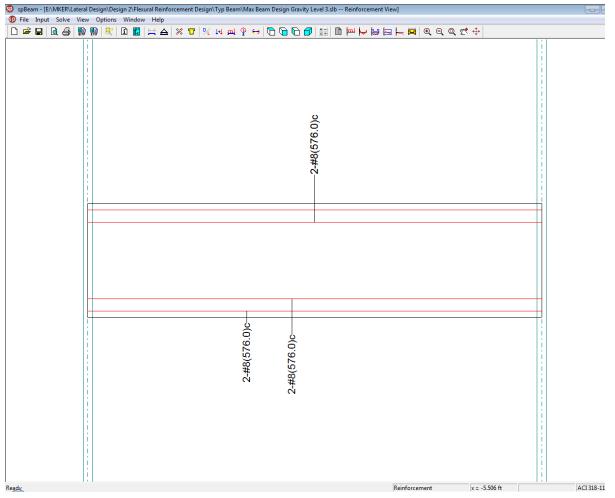


Figure I.3, spBeam Flexural Reinforcement Design of BG at Lvl. 3

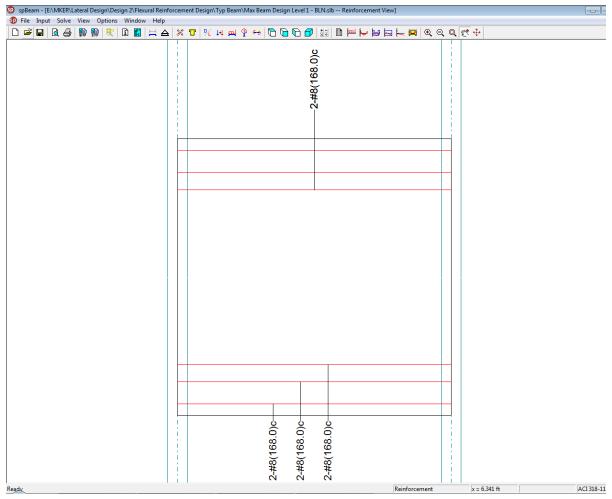


Figure I.4, spBeam Flexural Reinforcement Design of BLN Lvl. 1

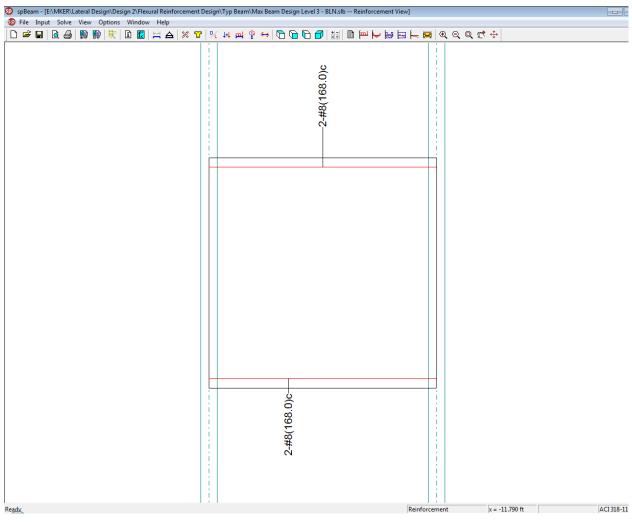


Figure I.5, spBeam Flexural Reinforcement Design of BLN Lvl. 3

) 🖻 🖬 🗟 🎒	🔛 🔛 🤻 🗓	low Help	% 🖬 🦎	₩ щ Ф (D 🖻 🔟	- ⊒ @ Q	Q. 💇 🕂	
						2-#8(80.0)c				
					2.#8(80.0)c	2-#8(80.0)c 2-#8(80.0)c	2-#8(80.0)c 2-#8(80.0)c			

Figure I.6, spBeam Flexural Reinforcement Design of BLS2P2T1P2 Lvl. 1

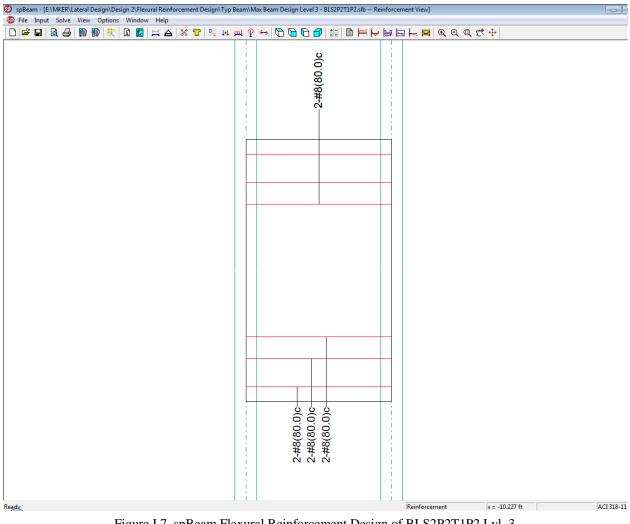


Figure I.7, spBeam Flexural Reinforcement Design of BLS2P2T1P2 Lvl. 3

Appendix J: Construction Breadth Calculations and Details

J.1 Quantity Take-Offs and Cost Estimate

J.1.1 Quantity Take-Offs

	Figure AI	1 Typica	l Lap Splice and Hook Lengths Determination
A _{tr} =	0.22	$\frac{11}{\text{in}^2}$	Eup Spilee and Hook Lenguis Determination
$S_{max, BM}$			
Ξ	5.00	in	
Smax, COL	10.0		
=	10.0	in	
$n_{BM} =$	8.0		
$n_{COL} =$	4.0		
$K_{tr,BM} =$	0.22		
$K_{tr,BM} =$	0.22		
$c_{b,min} =$	1.25	in	
L _{d60,T} =	6.42	ft	, tension ACI 318-11 §12.2.3 Equation 12-1
L _{d75,T} =	8.03	ft	, tension ACI 518-11 §12.2.5 Equation 12-1
L _{d60,C} =	1.29	ft	, compression members ACI 318-11 §12.3.2
L _{d75,C} =	1.61	ft	, compression memoris ACI 510-11 §12.5.2
$L_{hook60} =$	1.55	ft	, 90° hooks ACI 318-11 §12.5.1, 12.5.2
$12 d_{\rm B} =$	1	ft	

	Acceptional Incompetition		Length (ft) Area (ft ²)	2835.0 2145.0	1785.0 1581.7	1092.0 868.0	1134.0 665.6	1344.0 1346.4	2796.5 2651.6	1785.0 2204.2	1963.5 2062.0	1785.0 1545.8	1487.5 1772.8	2450.0 1802.5	770.0 732.5	630.0 620.0	420.0 413.4	420.0 413.4	630.0 620.0	2380.0 1341.2	840.0 501.7
	M41 Chid/Emine	INTIT: STRUCTURE	Quantity Leng	54.0 28:	34.0 17	26.0 10	27.0 11	32.0 13/	47.0 27	30.0 17	33.0 19	30.0 17	25.0 14	35.0 24:	11.0 77	15.0 63	10.0 42	10.0 42	15.0 63	34.0 23	12.0 84
	Cement Board	Sheathing	Area $(\hat{\mathbf{h}}^2)$	2145.0	1581.7	868.0	665.6	1346.4	2651.6	2204.2	2062.0	1545.8	1772.8	1802.5	732.5	620.0	413.4	413.4	620.0	1341.2	5917
e Quantities	Vapor Retarder	(Fluid Applied)	Area (\hat{H}^2)	3696.9	3070.3	2241.0	1943.0	2439.1	3769.0	3225.5	3053.3	3019.5	3397.5	2743.8	1416.0	1906.0	1642.1	1642.1	1906.0	2229.9	12517
Major Facade Quantities	Dimid Tumbation	ISULATION	Area (ft ²)	3696.9	3070.3	2241.0	1943.0	2439.1	3769.0	3225.5	3053.3	3019.5	3397.5	2743.8	1416.0	1906.0	1642.1	1642.1	1906.0	2229.9	12517
	Dimid L	III DIÂIN	Thk. (in.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10
	Chung	Sincco	Area (ft²)	3696.9	3070.3	2241.0	1943.0	2439.1	3769.0	3225.5	3053.3	3019.5	3397.5	2743.8	1416.0	1906.0	1642.1	1642.1	1906.0	2229.9	1251 7
		n²	Area (ft ²)	1551.9	1488.7	1373.0	1277.3	1092.7	1117.3	1021.3	991.3	1473.7	1624.7	941.3	683.5	1286.0	1228.7	1228.7	1286.0	888.7	660.0
	Concrete	$fc = 6000 \text{ lb/im}^{2}$	Height (ft.)	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	5.58	86.0	86.0	86.0	86.0	86.0	86.0	86.0
		fc	Layer Thk. Height (ft.)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	Concrete and Masonin	Well Defending	wall Designation	INN	NN2	NN3	NN4	SNN5	INS	SN2	SN3	SN4	SNS	EN-1	EN-2	EN-3	EN-4	INW	WN2	WN3	WN4

*** Only wall components unique to the wall system is counted and included in cost analysi:

*** Generally detailed flashing layout was not provided, thus it was designed *** Both redesign and original façade wall systems have the same flashing layout and design *** Assume flashings are 2' high and bendable/foldable

Flas	shing Quanti	ties
Designatio	Length (ft.)	Area (ft ²)
Stick-On	1407.36	2815
AT	2172.00	4344
ł	2218.75	2773

(a) Original Design and Design I

			Weight (ft)						23411	20847	20847										
	75 Ksi Rebar	#8 Rebar	Flex. Rebar Length (ft) Weight (ft)						8768	7808	7808										
			Weight (lb)	38106	30929	34827	28526	25888				37113	37369	20847	14952	33407	30983	30983	33407	21360	14439
Structural Component Quantities	Rebar	#8 Rebar	Flex. Rebar Length (ft)	14272	11584	13044	10684	9696				13900	13996	7808	5600	12512	11604	11604	12512	8000	5408
Structural	60 Ksi Rebar		Weight (lb)	2887	2887	4576	5058	4331	3003	2772	2829	3597	3597	2980	2887	6918	6825	6825	6918	3465	2310
		#3 Rebar	Shear Rebar Length (ft) Weight (lb)	7679	7679	12169	13453	11518	7986	7371	7525	9568	9568	7924	7679	18398	18152	18152	18398	9214	6143
	Maior Facada	Trialor Lacado	Quantures	INN	NN2	ENN3	NN4	SNN	INS	SN2	ENS	SN4	SNS	EN-1	EN-2	EN-3	EN-4	INW	WN2	ENW3	WN4

je.	
Id	
the	
of	
do	
esc	
4	
eyon	
ã,	
1	
lesign	
.H	
the	
pecause	
Ţ	
Ę,	
Ę.	
٠Ē	
not inclu	
are	
ll s	
Wa	
₿	
đ	
the tilt-t	
, in	
ect	
COILI	
ģ	
ates	
d	
2	
Intern	
Ē	
*	
*	

	Ē	9							
	Temporary Infrastru	Material	Crushed Stone Base	Asphalt	Pre-Cast Foundations	(24"x44"x20'			
	Total Cementitious	Fireproofing (ft ²)				11955			
Quantities	O marter	Quantury							88
re Proofing C	Total	Weight (lb)	196080	920580	308256	6024	53789	61112	
Structural Steel and Fire Proofing Quantities	T amonth (A)	Lengu (II)	1634	13740	4056	136	1490	1052	
Structural	Unit	Weight	120	67	76	44.2	36.1	58.1	
	Steel Member	Designation	W14x120	W16x67	W24x76	L8x6x1	HSS9x9x5/16	HSS12x12x3/8	Anchor Bolts 1-1/2"

Each

Temporary Infrastructure Materials

Quantity 4994 22

	π
	commute unions to the well cretem is counted and included
	7
	÷.
Ψ.	1
Ξ	.5
55	1
\$2	1
e)	
-8	_
	1
H	÷
6	
õ	Z
4	
60	•
в.	5
50	
. =	÷
_	2
H	- 5
PD)	-
. 🗖	7
	-
ā	
6	9
 and rigid insulation are the same 	÷
r retarder, stucco	2
8	4
10	
	. 5
	12
-H	-
Ĕ.	
-22	÷
a)	- 5
	- č
8	- C
of vapor n	- 5
.	- 5
	- 6
4	
0	-
- H	
antit	1
	4
3	F
o	C
* Quar	* Only up
#	¥
*	¥

	•	SIS
		st analysi
		00
		2
	•	ğ
	•	2
		nd m
	'	2
		2
		2
		Ť
		õ
1		0
	•	2
		a
		믎
	1	ĕ
		5
k		in
۲	:	
		50
		15
		e to the wall
•	ŝ	3
		0
	1	₽
		Ð
		B
r.	•	Ħ
		H
1		5
1		Ë
2		2
		8
1		8
۲		Ξ
		茵
•		ŏ
,	:	
þ		50
		ß
		Þ
	•	E
٧	¢	
	j	
	1	1
	1	۰.

	analysis
	cost
	ded in
	includ
	and
	counted
	mis
0	wall system
•	Ê,
•	unique to
•	components
•	wall
'	0 T
	*

		gining	Length (ft)	1946	680	5240	2626	13243	2090	1190	938	1946	3556	2884								
	Mtt Chid/Emrine	Jume	Quantity L	31	10	94	41	176	31	16	13	31	47	44								
			Area (ft²)	2435.8		6405.0	3357.8	16658.8	2594.3			2586.3	3573.3	4116.0								
	Meconer	INTEROIT	Layer Thk. Height (ft.)	86.0		86.0	86.0	86.0	83.5			86.0	86.0	86.0								
			Layer Thk.	7.6		7.6	7.6	7.6	2.6			7.6	7.6	7.6								
Quantities		n ²	Area (ft ²)		769.0					833.7	1257.4											
Major Facade Wall Quantities		$fc = 6000 \text{ lb/im}^2$	Layer Thk. Height (ft.) Area (ft ²)		86.0					86.0	83.5											
Major F	Concrete	f	Layer Thk.		10.0					10.0	10.0											
	Con	n ²	Area (ft ²)												888.7	1806.0	2322.0	702.3	723.8	1132.3	1003.3	1755.8
		$fc = 4000 \text{ lb/in}^2$	Layer Thk. Height (ft.) Area (ft ²)												86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0
			Layer Thk.												8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
	Concrete and Meconic	concrete and mason y Wall Designation	W all Designation	IN	AV5-X1	N2	N3	SI	EI	AV5-Y1	AV5-Y2	E2	W1	W2	AV1-X1	AV1-Y1	AV2-Y1	AV2-X1	AV3-X1	AV3-Y2	AV4-Y1	AV4-X1

*** Flashing layout and design is the same as redesign

ties	Area (ft²)	2815	4344	2773
shing Quanti	Length (ft.)	1407.36	2172.00	2218.75
Flas	Designatio	Stick-On	AT	2

(c) Design II

			^{TIS}	uctural Conc	rete and Mas	Structural Concrete and Masoury Component Quantities	ties				
					Rebar	ar .				Lintel/Bo	Lintel/Bond Beams
Concrete and Masoury	#3 Rebar	bar		#5 Rebar		#8 Rebar		#10 Rebar		r d	Delimina
Wall Designation	Rebar Length (ft)	t) Weight	Rebar Le	Rebar Length (ft)	Weight	Rebar Length (ft)	Weight	Rebar Length (ft)	Weight		Au-lo (A)
	Shear	(Ip.)	Horizontal	Vertical	(Ip.)	Flexure	(lp.)	Flexure	(IP)	Deam (III.) Angle (III.)	Angle (II.)
IN			1207		2508					486	
AV5-X1	1143	430				1272	3396				
N2			3312	3216	6802					1274	531
N3			1935	1656	3742					650	
SI			8328	8272	17297					2706	135
EI			1195	1214	2510					490	73
AV5-Y1	1143	430						1272	5473		
AV5-Y2	4249	1598						3432	14768		
E2			1325	1288	2723					504	
W1			1770	1682	3597					680	
W2			2077	2076	4328					729	
AV1-X1	1377	518				1492	3984				
AV1-Y1	4320	1624				3024	8074				
AV2-Y1	7172	2697				3828	10221				
AV2-X1	1056	397				1352	3610				
AV3-X1	1043	392				1032	2755				
AV3-Y2	1904	716				1548	4133				
AV4-Y1	1700	639				1504	4016				
AV4-X1	4252	1599				2536	6771				
	Structural Steel and Fire Proofing Quantities	e Proofing Quant	ities			*** Temporary infrastructure is the same as the redesign	acture is the s	ame as the redesign			
Steel Member	Unit Lanath	Total	Total Cen	Total Cementitious							
Designation	Weight Lengu (II)	Weight (lb)	Fireproofing (ft ²)	fing (ft ²)		Temporary I	Temporary Infrastructure				

Total Cementitious	 Fireproofing (ft²) 		25798.6	
Total	Weight (lb	423120	1013844	514368
T	Lengu (II)	3526	15132	6768
Unit	Weight	120	67	76
Steel Member	Designation	W14x120	W16x67	W24x76

nfrastructure	Quantity (Yd ²)	4994	4994	
Temporary I	Material	Crushed Stone Base	Asphalt	

J.1.2 Cost Estimate

Immediately below are the items used in all the cost estimates, all of which are taken from 2013 and 2014 R.S. Means. The purpose of including these snapshots in the report serve as proof that no values were in any way made up .

Line Number	6	Description	Unit Cr	Crew Daily Output		Labor Hours Bare Material	Bare Labor	Bare Equipment
042210141150		Concrete block, back-up, normal weight, tooled joint one side, 2000 psi, 8" x £	SF	D8	395.00 0.	0.101 2.37	7 2.56	
015423751510		Scaffolding Specialties, sidewalk bridge, tubular steel scaffold frames, incl. plan	LF. 3	Cai	45.00 0.1	0.533 5.57	15.17	
040516300700		Grout, cavity walls, 6° space, 0.500 C.F./S.F., pumped, excludes blockwork	S.F.	D4 8	800.00 0.0	0.050 2.21	1,17	0.16
042210162100		Concrete block, bond beam, normal weight, 2000 psi, 8" x 16", includes mortar	ĽF.	D8	300.00 0.	0.133 4.37	3.37	
051223451000		Lintel angle, structural, unpainted, over 2000 lb,, shop fabricated, for galvanizing	9		0.00	0.22	~	
033105350300		Structural concrete, ready mix, normal weight, 4000 psi, includes local aggregate, s	C.Y.		0.00	106.28		
033105350411		Structural concrete, ready mix, normal weight, 6000 PSI, includes local aggregate, :	C.Y.		0.00	128.17		
033105351420		Structural concrete, ready mix, for high-range water reducer/superplasticizer, add	C.Y.		0.00	6.36	10	
033105705000		Structural concrete, placing, walls, with crane and bucket, 8" thick, includes level	C.Y.	C7	80.00 0.1	0.900	19.52	14.88
031113852800		C.I.P. concrete forms, wall, job built, plywood, over 16' high, 3 use, includes er	SFC#	C2 3	315.00 0.	0.152 0.90	3.75	
092423401000		Stucco, exterior, with bonding agent, 3 coats, on walls, excl. mesh	S.Y.	J1 2	200.00 0.1	0.200 3.48	3 4.96	0.70
092423400300		Stucco, 3 coats, float finish, 3/4" thick, excl. lath, for trowel finish, add	S.Y. 1	1 Pla	170.00 0.1	0.047	1.23	
032110600700	•	Reinforcing Steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories,	Ton 4	4 Roi	3.00 10.1	10.667 953.00	392.80	
032110600750	•	Reinforcing Steel, in place, walls, #8 to #18, A615, grade 60, incl labor for acces	Ton 4	4 R0i	4.00 8.	8.000 953.00	0 293.62	
032116100100		Epoxy coating, for reinforcing steel, add to fabricated & delivered price for coating with	Ton		00.00	443.15	10	
072129100350	٠	Insulation, polyurethane foam, 2#/CF density, 5" thick, R32.5, sprayed	S.F.	G2A 12	1200.00 0.	0.020 2.20	0 0.55	0.59
072113102100	•	Wall insulation, rigid, expanded polystyrene, 1" thick, R3.85	S.F. 1	1 Cai 8	800.00 0.	0.010 0.24	4 0.37	
076510100020		Sheet metal flashing, aluminum, flexible, mill finish, .013" thick, including up to 4 bend	S.F. 1	1 Rol 1	145.00 0.0	0.055 0.73	1.20	
076513100750		Laminated sheet flashing, aluminum, mill finish, mastic-backed, self adhesive	S.F. 1	1 Rol 4	460.00 0.1	0.017 3.46	5 0.38	
075113400900		Felt, asphalt, #15, 4 square per roll, no mopping	Sq. 1	1 Rol	58.00 0.	0.138 4.87	7 3.24	
051223177400	ę	W14 x 120	LF.	E2 9	960.00 0.036	0.050 154.63	3 1.90	1.57
051223753140	ę	x 67	LF.	E2 7	760.00 0.	0.063 86.30	0 2.40	1.99
051223755500	•	x76	LF.	E5 11	1110.00 0.	0.065 97.99	9 2.46	1.48
Line Number	\$	Ø Description	Unit Ct	Crew Daily Output	utput Labor Hours	Irs Bare Material	Bare Labor	Bare Equipment
321123230050		Base course drainage layers, aggregate base course for roadways and large pave	S.Y. B	B36C 52	5200.00 0.	0.008 3.09	9 0.23	0.77
320610100100		Sidewalks, driveways, and patios, side walks, asphaltic concrete, 2-1/2" thick, ex	S.Y.	B37 (660.00 0.	0.073 10.21	1 1.90	0.23
054113304340	•	Partition, galv LB studs, 16 ga x 3-5/8" W studs 16" O.C. x 8" H, incl galv top & I	LF. 2	2 Cai	66.00 0.3	0.242 9.37	7 8.58	
092813100200		3' x 6' x 5/8" sheets	S.F. 2	Cai	350.00 0.	0.046 0.87	7 1.29	
032110601200	•	Reinforcing Steel, for high strength, Grade 75, add to base	Ton		0.00	88.15		
032105750300	ę	Splice rebar, standard, self-aligning type, taper threaded, #8 bars	Ea.	C25 1	115.00 0.	0.278 15.82	2 8.10	
031519100510	ę	Anchor bolt, L-type, 2-bolt set, plain steel, 1-1/2" dia x 24" L, incl nut & washer,	Set 2	2 Cai	32.00 0.	0.500 52.75	5 13.85	
072726100100		Fluid applied membrane air barrier, 25 S.F./Gallon, spray	S.F. 1	1 Por 13	1375.00 0.1	0.006 0.01	1 0.19	
092213130030		Furring, beams & columns, galvanized, 7/8" channels, 12" O.C.	S.F.	1 Lat	155.00 0.	0.052 0.38	1.29	
015433601400		Rent crawler mounted, lattice boom crane, cable, 200 ton, 70' boom	Ea.		0.00	126.54	1 2423.05	7254.32
034105101300		Precast beam, rectangular, 20' span, 24" x 44", includes material only	Ea	C11	22.00 2.	2.545 3612.00	97.54	83.57
051223770800	•	3 to 6 stories	Ton	E6	14.40 8.	8.333 2382.35	5 316.58	127.58
015433203320		Rent, sheepstoot vibratory roller, 340 H.P.	0	0.00	88.32	1532.95	4579.07 13	13747,10 1621.96
015433602800		Rent crane self-propelled, 4x4 telescoping boom 5 ton Ea.	0	0.00	16.96	225.49	677.47 2	2027.45 271.18

(a) Original Design

	Notes		[3] [4]	[4]	[2]		[4]		[4] [6]		10% Waste Factor	10% Waste Factor		[4] [7]	[4] [7]	10% Waste Factor		[4]		[8]	[6]				[10]	
	Total w/ Waste Factor		\$223,226.82	\$84,918.96	\$181,359.25		\$60,503.22		\$213.24		\$36,257.21	\$12,264.33		\$13,920.85	\$11,296.60	\$3,848.33		\$76,244.45	\$704,053.26							\$869,747.80
	Equipment Cost				\$7,133.98														\$7,133.98			\$7 133 98	Descentis to	\$713.40	-\$7.81	\$7,839.58
	Equipment Unit Cost [1] [2]				\$0.16																					
	Labor Cost		\$114,143.74	\$64,421.28	\$52,167.26		\$25,824.31				\$9,882.61			\$8,540.40	\$1,069.70	\$1,444.80		\$57,517.75	\$335,011.85		\$33,501.18	\$368 513 03	course front	\$36,851.30	-\$403.19	\$404,961.15
	Number of Crews		4	2	2		1				2			2	-	2		10								
	Unit Crew Size		5	•	9		5				4			-	-	1		-								
Wall System	Daily Output per Crew [1] [2]		395.00	45.00	800.00		300.00				3.00			145.00	460.00	58.00		155.00								
Original Façade Wall System	Labor Unit Cost ^{[1][2]}		\$2.56	\$18.48	\$1.17		\$3.37				\$392.80			\$1.20	\$ 0.38	\$ 3.24		\$1.29								
б	Material Cost		\$103,888.64	\$19,521.60	\$97,646.41		\$33,027.53		\$203.09		\$23,976.91	\$11,149.39		\$5,124.24	\$9,739.90	\$2,185.03		\$17,834.96	\$324,297.70	\$19,457.86	\$34,375.56	\$378.131.11	TT-TC-TG-LCA	\$37,813.11	-\$13.71	\$415,530.51
	Material Unit Cost ^{[1] [2]}		\$ 2.33	\$5.60	\$2.19		\$4.31		\$ 0.23		\$953.00	\$443.15		\$0.72	\$3.46	\$4.90		S0.40								
	Required Quantity		44587	3486	44587		7663		883		25	25		7117	2815	446		44587								
	Units		₽s	æ	£		æ		.9I		Ton	Ton		°₽	Ъ,	100 ft ²		£,								
	mail	CIVID	50	Scaffolding	Grout	Bond Beams	8"	Lintels	Relieving Angles	Reinforcement	#3 to #7 Rebar (60 Kst)	Epoxy Coating	Barriers to Moisture Infiltration	Aluminum Flashing	Laminated Sheet Flashing, Self Adhered	Vapor Retarder/Waterproofing	Misc.	Furing Strips/Resilient Channels	Subtotals	Sales Tax (6%)	Overhead & Profit (10%)	Subtotal		Contingency (10%)	Adjustments	
	Cost Code		042210141150	015423751510	040516300700		042210162100		051223451000		032110600700	032116100100		076510100020	076513100750	075113400900		092213130030								

	Notes		10% Waste Factor	10% Waste Factor			10% Waste Factor	10% Waste Factor		10% Waste Factor							10% Waste Factor	10/01 T 20/01		10% Waste Factor	[4]				[8]	[6]			[10]	
	Total w/ Waste		\$6,183.76	\$29,229.70	\$11,554.25		\$29,401.44	\$1,757.07	\$8,823.62	\$98,629.60		00 100 100	90 102 022 13	0017017017010	\$689,862.24		737 602 34	Lougon Look		\$21.968.61	\$55,051.36	\$56,788.38	\$39,733.60	\$3,016,457.65						\$4,004,443.31
	Equipment								\$3,827.48			46 696 01	39 011 023	00.211/000	\$10,016.64		\$3.095.88	00101050		\$3,845.38	\$1,148.62	\$27,593.10	\$18,039.20	\$103,214.80			\$103,214.80	\$10,321.48	-\$112.93	\$113,423.36
	Equipment Unit								\$15.00			61.67	0013	11.10	\$1.48		\$0.12	71.00		\$0.77	\$0.23	\$1,532.95	\$225.49							
	Labor Cost		\$1,685.50	\$6,395.63					\$4,996.14	\$77,713.18		67 COD 40	\$0,099.4U		\$16,649.28		\$17.285.33	CC-CO26146		\$1,148.62	\$364.56	\$29,195.28	\$21,694.40	\$220,144.13		\$22,014.41	\$242,158.54	\$24,215.85	-\$264.94	\$266,109.45
	Number of		5	2					1	4			-		-		4	•		-	-									
	Unit Crew		4	4					13	9		,		- :	=		4	•		10	7									
ral System	Daily Output		3.00	4.00					80.00	315.00		00000	00.004	00001	1110.00		1100.00			5200.00	660.00									
Original Structural System	Labor Unit		\$392.80	\$293.62					\$19.58	\$3.76		61 00	01.16	10.10	\$2.46		S0.67	1000		\$ 0.23	\$0.07	\$1,621.96	\$271.18							
Ĭ	Material Cost		\$4,089.32	\$20,758.25	\$11,554.25		\$26,728.58	\$1,597.34		\$19,014.93		00 JUL 30	0010270406	00100000000	\$663,196.32		\$15 737 30	10-10-5076		\$15,431.46	\$50,988.74			\$2,680,213.55	\$160,812.81	\$284,102.64	\$3,125,129.00	\$312,512.90	-\$3,419.18	\$3,434,222.72
	Material Unit		\$953.00	\$953.00	\$443.15		\$104.75	S6.26		\$0.92		6154.00	012420	00000	6616\$		50.61	10:00		\$3.09	\$10.21									
	Required 1		4	22	26		255	255	255	20668		2036	0700	2000	6/68		06720			4994	4994	18	80							
	Units		Ton	Ton	Ton		^{PX}	^p Xd ³	⁵ bY	₽ ³		4	4	:	Ħ		4	4		Yd ²	Yd ²	Per Day	Per Day							
	Item	Reinforcement	#3 to #7 Rebar (60 Ksi)	#8 to #18 Rebar (60 Ksi)	Epoxy Coating	Concrete	4000 psi	Superplasticizer	Crane and Bucket for Walls	Job Built Fornwork Over 16' High, 3 Use	Christianal Chief	Ľ	071XH7M	I DOLO T	W24x/6	Firmmorfing	rueprootung Smraved Cemtifions	charace common	Mise.	Base Course Crushed Graded Stone	2-1/2" Asphalt Road Topping	015433203320 Sheepsfoot Drum Vibratory Roller/Compactor	015433602800 Self-Propelled 5 Ton Crane w/ Telesc. Boom	Subtotals	Sales Tax (6%)	Overhead & Profit (10%)	Subtotal	Contingency (10%)	Adjustments	Total
	Cost Code		032110600700	032110600750	032116100100		033105350300	033105351420	033105705000	031113852800			0/1/1077100	officient of	000000/277100		078116100700			321123230050	320610100100	015433203320	015433602800							

(b) Design I

ratem	²⁰¹¹ Unit Crew Number of V Size Grews Labor Cost Equipment Unit Equipment Total W/Warte Notes Cost ¹⁰¹⁰¹ Cost Factor Notes		5 4 \$106.821.89	3 5 5 564,421.28 584,918,96 [4]	6 2 \$48,820.94 \$0.16 \$6,676.37 \$169,725.79		5 1 \$25,339.03 \$59,366.26 [4]		\$178.47 [4] [6]		4 2 \$8.544.77 \$31.348.97 10% Waste Factor	\$10,604,07		1 3 \$16,499.23 \$28,204.76 [4]		1 7 58,540,40 \$13,920,85 [4] [7]	1 1 1 \$1,069.70 \$11,296.60 [4][7]	1 2 \$1,444.80 \$3,848.33 10% Waste Factor		1 10 \$53,828.22 \$71,333.68 [4]	LT TL9 2093 L2 929 93 52 022 3223		333,533.03 [9]	\$368,863.28 \$6,676.37	\$36,886.33 \$667.64	-\$403.57 -\$7.30 [10]	
			\$208,907.73	\$84,918.96	\$169,725.79		\$59,366.26		\$178.47		\$31,348.97	\$10,604.07		\$28,204.76		\$13,920.85	\$11,296.60	\$3,848.33		\$71,353.68	S693 674 47						
					\$6,676.37																\$6,676.37			\$6,676.37	\$667.64	-\$7.30	
	Equipment Unit Cost [1] [2]				\$0.16																						
	Labor Cost		\$106.821.89	\$64,421.28	\$48,820.94		\$25,339.03				\$8,544.77			\$16,499.23		\$8,540.40	\$1,069.70	\$1,444.80		\$53,828.22	\$5 055 3553		\$33,533.03	\$368,863.28	\$36,886.33	-\$403.57	
	Number of Crews		4	s	2		1				2			°,		7	-	2		10							
a	Unit Crew Size		5	m	9		5				4			1		-	1	1									
ide Wall Syster	Daily Output per Crew [1] [2]		395.00	45.00	800.00		300.00				3.00			800.00		145.00	460.00	58.00		155.00	I						
Revised Original Facade Wall System	Labor Unit Cost ^{[1] [2]}		\$2.56	\$18.48	\$1.17		\$3.37				\$392.80			\$0.37		S 1.20	\$ 0.38	\$3.24		S 1.29	I						
Revise	Material Cost		\$97,224.61	\$19,521.60	\$91,382.79		\$32,406.89		\$169.97		\$20,731.09	\$9.640.06		\$11,148.13		\$5,124.24	\$9,739.90	\$2,185.03		\$16,690.92	\$315 965 22	\$18 957 91	\$33,492.31	\$368,415.45	\$36,841.54	-\$403.08	
	Material Unit Cost ^{[1] [2]}		\$2.33	\$5.60	\$2.19		\$4.31		\$ 0.23		\$953.00	S443.15		\$0.25		S0.72	\$3.46	\$4.90		S0.40							
	Required Quantity		41727	3486	41727		7519		739		22	8		44593		7117	2815	446		41727							
	Units		ħ²	æ	° ₽		æ		ġ		Ton	Ton		° a ⊨		£	£,	100 ft ²		8 4							
	Item	CMU	-00	Scaffolding	Grout	Bond Beams	8"	Lintels	Relieving Angles	Reinforcement	#3 to #7 Rebar (60 Ksi)	Epoxy Coating	Insulation	1" Expanded Polystyrene	Barriers to Moisture Infiltration	Aluminum Flashing	Laminated Sheet Flashing, Self Adhered	Vapor Retarder/Waterproofing	Mase.	Furring Strips/Resilient Channels	Subtotals	Cales Tav (6%)	Overhead & Profit (10%)	Subtotal	Contingency (10%)	Adjustments	
	Cost Code		042210141150	015423751510	040516300700		042210162100		051223451000		032110600700	032116100100		072113102100		076510100020	076510100020	075113400900		092213130030							

							TIOUNTOC DE INTONIO	(I) HOUR							
Bacheboreance is build scalar s for all scalar by contract Ten 6 993300 532301 532300 5300 53000	Cost Code	Item	Units	Required	Material Unit	Material Cost	Labor Unit	Daily Output	Unit Crew	Number of	Labor Cost	Equipment Unit		Total w/ Waste	Notes
		Reinforcer													
	32110600700		Ton	9	\$953.00	\$5,260.56	\$392.80	3.00	4	2	\$2,168.26			\$7,954.87	10% Waste Factor
	32110600750		Ton	*	\$953.00	\$32,021.28	\$293.62	4.00	4	2	\$9,865.78			\$45,089.18	10% Waste Factor
	32116100100		Ton	39	\$443.15	\$17,336.25								\$17,336.25	
		Concrete													
	033105350300		хď	255	\$104.75	\$26,728.58								\$29,401.44	10% Waste Factor
	033105350411	6000 pai	⁵ PA	11	\$126.32	\$8.920.69								\$9.812.76	10% Waste Factor
Crane and Bucker for Walls Ya 315 5 315 5 315 6 4 853731 815.00 5,366 Job Built Formovio Over (6 Hgh.) U A 3356 315.00 5 315.00 5 315.00 5 53536 5356 514.63 544.2753 519.60 7 1 369.21114 55.00 553.55 53536 515.66 54.06 51.97 553.55 53.10 56.00 7 1 366.99.40 51.97 553.55 Widen/ A 5 57.99 56.51.96.52 52.40 7000 7 1 36.69.40 51.97 553.55 Widen/ A 57.99 50.61 51.57.99 50.67 110.00 11 1 36.69.40 51.95 53.55.59 53.01.26 Widen/ Widen/ A 27.90 50.67 110.00 1 1 1 56.69.40 51.95 53.55.59 53.146 50.05 51.44 50.05 51.44	033105351420		ęΡΛ	326	S6.26	\$2,039.42								\$2,243.36	10% Waste Factor
	033105705000	Crane and Bucket for Walls	ε ^ρ Λ	326			\$19.58	80.00	13	1	\$6378.87	\$15.00	\$4 886 78	\$11,265,65	
Subtratal Steel Miden Section A State	031113852800	-	H	26389	S 0.92	\$24,277.51	\$3.76	315.00	9	4	\$99,221.14			\$125,926.40	10% Waste Factor
											6				
		Structural Steel													
W1667 \hbar 1513 586.30 51.305 58.30 51.305 58.30 51.305 58.30 51.305 58.30 51.305	051223177400	Ľ	æ	3526	\$154.63	\$545,225.38	\$1.90	960.00	7	1	\$6,699.40	\$1.57	\$5,535.82	\$557,460.60	
	051223753140		æ	15132	\$86.30	\$1 305 891 60	\$2.40	760.00	6	-	\$36.316.80	\$1.99	\$30,112,68	\$1 372 321 08	
	051223755500		æ	6768	897.99	\$663.196.32	\$2.46	1110.00		-	\$16,649.28	\$1.48	\$10.016.64	S689.862.24	
		Fireproofing													
Mat. Mat. <t< td=""><td>078116100700</td><td></td><td>æ</td><td>25799</td><td>\$0.61</td><td>\$15,737.39</td><td>\$0.67</td><td>1100.00</td><td>4</td><td>4</td><td>\$17,285.33</td><td>\$0.12</td><td>\$3,095.88</td><td>\$37,692.34</td><td>10% Waste Factor</td></t<>	078116100700		æ	25799	\$0.61	\$15,737.39	\$0.67	1100.00	4	4	\$17,285.33	\$0.12	\$3,095.88	\$37,692.34	10% Waste Factor
Date Control 10 1 511.46.2 50.73 513.63.5 2.17. Arguals Groue Yali 494 \$31.641 \$30.75 \$31.46.75 \$31.46.75 \$31.43.75 \$31.46.75 \$31.43.75 \$31.40.72 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.43.74.10 \$31.		Mise.													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	321123230050		Yd ²	4994	\$ 3.09	\$15,431.46	\$ 0.23	5200.00	10	-	\$1,148.62	\$0.77	\$3,845.38	\$21,968.61	10% Waste Factor
Subsection Dum Vibratory Roller/Compared Pr. Day 18 \$1,631.06 \$2,919.5.38 \$1,532.55 \$27,593.10 Subtrati Par. Day 80 \$27,113 \$21,619 \$21,639.40 \$21,532.56 \$1,532.55 \$21,593.10 Subtrati Subtrati Falor Par. Day \$0 \$21,130.517 \$21,634.40 \$215.549 \$18,039.20 Subtrati Subtrati Par. Day \$21,130.517 \$21,051.13 \$21,130.517 \$21,640 \$215.549 \$18,039.20 Subtrati Subtrati Par. Day \$21,617 Par. Day \$21,696.77 \$10,274.10 Overbade & Ponti (10%) Par. Par. Par. Par. Par. Par. Par. Par.	320610100100		797	4994	\$10.21	\$50,988.74	S0.07	660.00	7	1	\$364.56	\$0.23	\$1,148.62	\$55,051.36	[4]
Safe Progeled 5 Ton Graze w/Telecc. Boom Par Day \$277.1.18 \$217.1.8 \$217.640 \$225.49 \$18039.20 Subtotals Event Day 80 \$277.13 \$277.13 \$217.140 \$226.697.72 \$216.410 \$225.49 \$18039.20 Subtotals Event Day 80 \$2713.055.17 \$20 \$246.987.72 \$104,774 Sale Tax (6%) Point (10%) Sale Tax (6%) \$162,783.31 \$162,783.31 \$246.987.72 \$104,274.10 Overhead & Podit (10%) Point (10%) \$257.588.55 \$257.588.55 \$246.687.77 \$104,274.10 Subtotal Subtotal \$3163,422.33 \$216,422.33 \$216,427.23 \$216,427.10 Contingency (10%) Point (10%) Salid 54.22.33 \$216,427.33 \$216,427.23 \$216,427.23 \$216,427.23 Adjutuments Salid 54.22.33 Salid 54.22.33 \$316,427.23 \$216,427.23 \$216,427.23 \$216,427.23 Adjutuments Salid 54.22.33 Salid 54.22.33 \$216,427.23 \$216,427.23 \$216,427.23 \$216,427.23 Adjutument	015433203320	Sheepsfoot Drum Vibratory Roller/Compact	Per Day	18			\$1,621.96				\$29,195.28	\$1,532.95	\$27,593.10	\$56,788.38	
S2713,055.17 S246,987.72 S104,274.10 \$162,733.31 \$246,987.72 \$104,274.10 \$162,733.35 \$257,583.35 \$104,274.10 \$257,583.35 \$256,687.77 \$104,274.10 \$256,687.72 \$256,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,686.77 \$216,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,682.73 \$216,686.77 \$104,274.10 \$256,682.73 \$277,586.56 \$104,274.10 \$256,682.74 \$207,256.75 \$104,274.10 \$256,682.77 \$277,586.57 \$104,274.10 \$256,682.77 \$277,586.57 \$104,274.10 \$256,682.77 \$277,586.57 \$104,274.10	015433602800		Per Day	80			\$271.18				\$21,694.40	\$225.49	\$18,039.20	\$39,733.60	
S246.987.72 S246.987.72 S104.274.10 1 \$16.778.31 \$16.778.31 \$16.778.31 1 \$16.778.31 \$246.987.72 \$104.274.10 1 \$257.583.35 \$246.987.72 \$104.274.10 1 \$257.583.35 \$246.987.77 \$104.274.10 1 \$257.583.35 \$21.666.49 \$104.274.10 2 \$316.422.33 \$27.168.65 \$104.274.10 1 \$254.601.07 \$257.158.55 \$104.274.10															
\$27,13,055.17 \$24,698.72 \$10,274.10 10,275.17 \$10,274.10 \$10,274.10 \$10,274.10 10,127.12 \$23,163.11 \$24,698.77 \$10,274.10 10,127.12 \$23,163.12 \$24,698.77 \$10,274.10 10,127.12 \$23,163.12 \$24,698.77 \$10,274.10 10,127.12 \$21,698.77 \$21,698.77 \$10,274.10 10,127.11 \$21,698.77 \$10,274.10 \$10,274.10 10,127.11 \$21,698.77 \$10,274.10 \$10,274.10 10,127.11 \$23,661.07 \$24,61.07 \$10,277.10 \$10,277.11 10,127.11 \$23,61.07 \$23,168.77 \$10,277.10 \$10,277.11 \$10,277.11															
S162,78331 S162,78331 S162,78331 S287,58385 S24,698,77 S24,612 S24,651,77 S24,612,77 S24,712,77		Subtotals				\$2,713,055.17					\$246,987.72		\$104,274.10	\$3,079,908.11	
S287.583.85 S287.583.85 S24,698.77 S24,649 S24,649 S24,641.07 S24,641.07 S24,641.07 S24,641.07 S24,641.07 S24,641.07 S27,168.65 S27,168.65 S27,168.65 S27,168.65 S24,641.07 S24,641.07 S27,168.65 S27,168.65<		Sales Tax (6%)				\$162,783.31									[8]
No. S2,163,422.33 S271,686,49 S <td></td> <td>Overhead & Profit (10%)</td> <td></td> <td></td> <td></td> <td>\$287,583.85</td> <td></td> <td></td> <td></td> <td></td> <td>\$24,698.77</td> <td></td> <td></td> <td></td> <td>[6]</td>		Overhead & Profit (10%)				\$287,583.85					\$24,698.77				[6]
\$336,342,233 \$27,168,65 \$27,168,65 \$23,461,07 \$23,97,25		Subtotal				\$3,163,422.33					\$271,686.49		\$104,274.10		
		Contingency (10%)				\$316,342.23					\$27,168.65		\$10,427.41		
		Adjustments				-\$3,461.07					-\$297.25		-\$114.09		[10]
6 67:00:0476		Total				\$3.476.303.49					\$298.557.89		CF 282 715	\$4 083 921 23	

(b) Design II

																	Π	Π	Π	Π	Π		
	Notes		4	[4]	[4]		4	[4]		[4] [7]	[4] [4]	[4] [7]		[4]			8	6			[10]		013 and 91.3 Aeans
	Total w/ Waste Factor		\$430.584.01	\$84,918.96	\$744,325.53		\$28,204.76	\$12,331.79		\$13.920.85	\$11,296.60	\$13,154.79		\$71,353.68		\$1,410,090.96						\$1,799,584.81	0-P is assumed to be 10% Location factor is 91.4 (total weighted average) for 2013 and 91.3 (total weighted average) for 2008, valuesfrom R.S. Means
	Equipment Cost															\$0.00			\$0.00	\$0.00	\$0.00	\$0.00	be 10% 91.4 (total wei arage) for 2000
	Equipment Unit Cost ^{[1][2]}																						O+P is assumed to be 10% Location factor is 91.4 (tota (total weighted average) for
	Labor Cost		\$200.581.52	\$64,421.28	\$238,396.55		\$16,499.23	\$3,740.45		\$8,540.40	\$1,069.70	\$8,472.58		\$53,828.22		\$595,549.92		\$59,554.99	\$655,104.91	\$65,510.49	-\$716.74	\$719,898.66	[9] [01]
	Number of Crews		12	5	15		2	3		9	-	4		10									
	Unit Crew Size		2	3	2		-	1		-	-	5		1									ans (490 lb/ ft 3
Wall System	Daily Output per Crew [1] [2]		66.00	45.00	63.00		800.00	1400.00		145.00	460.00	1375.00		155.00									ded by R.S. Me n stl. density of " in height
Redesigned Façade Wall System	Labor Unit Cost ^{[1][2]}		\$ 8.58	\$18.48	S8.98		\$ 0.37	S0.16		S1.20	\$ 0.38	\$0.19		\$1.29									r is 25%, Provi gles is based o anned to be 24
Red	Material Cost		\$219.049.99	\$19,521.60	\$481,837.13		\$11,148.13	\$8,182.23		\$5,124.24	\$9,739.90	\$4,459.25		\$16,690.92		\$775,753.38	\$46,545.20	\$82,229.86	\$904,528.44	\$90,452.84	-\$989.64	\$993,991.64	Grour Waste factor iz 25%, Provided by R.S. Meaux Wt. of relieving angles is based on stl. density of 490 lbft3 All filabiling are assumed to be 24° in height Sales tax is assumed to be 6%
	Material Unit Cost ^{[1] [2]}		\$9.37	\$5.60	\$18.15		\$0.25	\$ 0.35		S0.72	\$3.46	\$0.10		S0.40									5958
	Quantity		23378	3486	26548		44593	23378		7117	2815	44593		41727									
	Units		°2#	æ	ŧ		£₽	ff²		₽3	£4	£₽		₽5									peq
	Item	Sheathing and Framing	5/8" Fiber Cement Board	Scaffolding	16 Gauge Mfl. Stud	Insulation	1" Expanded Polystyrene	3-1/2" Acoustical Insulation	Barriers to Moisture Infiltration	Aluminum Flashing	Laminated Sheet Flashing, Self Adhered	Vapor Retarder/Waterproofing (Fluid)	Mise.	Furing Strips/Resilient Channels		Subtotals	Sales Tax (6%)	Overhead & Profit (10%)	Subtotal	Contingency (10%)	Adjustments	Total	Values referenced from R.S. Means 2013 Open shop labor CAUU laid in alternate courses Waste Factor is assumed to be 3%, unless noted
	Cost Code		092813100200	015423751510	054113305430		072113102100	098436100970		076510100020	076510100020	072726100100		092213130030									225¥

	Notes	10 I I I I I I I I I I I I I I I I I I I	10% Waste Factor	10% Waste Factor	10% Waste Factor	10% waste ractor		10% Waste Factor	10% Waste Factor	10% Waste Factor								10% Waste Factor	10% Wrate Factor		E							[8]	[6]			[10]	
	Total w/ Waste Factor	21 000 000	CI.66/.5C\$	21.100,900	CF-0CL-25	\$3.046.45		\$90,982.25	\$4,508.78	\$11,388.02 \$101,024.40		\$258,335.40	\$1,246,080.60	\$413,428.08	\$18,614.16			\$17,466.26	C)1 048 61	\$55 D51 36	\$77 503 10	\$59 462 04	\$22,350.15	\$83,448.42	\$163,937.58		\$3,129,578.43						\$4,122,281.85
	Equipment Cost									\$9,821.62		2565.38	27342.6	6002.88	\$1,987.92			\$1,434.60	\$2 \$72 28	CY 148 63	\$77 503 10	\$49.763.68	\$10,147.05	\$1.838.54	\$7,399.64		\$150,391.01			10 162 05 15	\$15,039.10	-\$164.54	\$165,265.57
	Equipment Unit Cost ^{[1][2]}									\$15.00		1.57	1.99	1.48	\$0.33			\$0.12	\$0.77	\$0.23	\$1 527 05	\$12315.92	\$225.49	\$ 83.57	\$127.58								
	Labor Cost	10121	\$14,664.01	c0./+1,c/¢		\$609.40				\$1,566.40 \$79,555.13		\$3,104.60	\$32,976.00	\$9,977.76	\$12,590.16			C8:600'8\$	¢1 148 67	C364 56	\$10105.78	00 (69 65	\$12,203.10	\$2.145.88	\$18,361.64		\$309,311.64		\$30,931.16	\$340.242.81	\$34,024.28	-\$372.26	\$373,894.83
	Number of Crews		2	4		1			·	6 2		1	1		2			2	-	•					1								
	Unit Crew Size		4.	+		2			:	13		7	7	=	4			4	10	2	-			9	15								
lution (2)	Daily Output per Crew [1] [2]	000	3.00	4.00		32.00				80.00 315.00		960.00	760.00	1110.00	440.00			1100:00	200.00	KKO M	00.000			22.00	14.40								
Structural Solution (2)	Labor Unit Cost ^{[1][2]}	4100.00	\$392.80	70.0674		\$13.85				\$19.38 \$3.75		S1.90	\$2.40	\$2.46	\$2.09			\$0.67	\$0.33	20.07	\$1 K71 0K	\$2,423,05	\$271.18	\$97.54	\$316.58								
	Material Cost	00 CON 10	\$35,17C,CES	61.214,1226	00.608,26	\$2.321.00		\$82,711.14	\$4,098.89	\$19,517,52		\$252,665.42	\$1,185,762.00	\$397,447.44	\$4,036.08			CC.262,18	\$15 431 4K	650 088 74	11.000,000	\$50616		\$79,464.00	\$138,176.30		\$2,643,220.26	\$158,593.22	\$280,181.35	\$3 081 994 82	\$308,199.48	-\$3,371.99	\$3,386,822.32
	Material Unit Cost ^{[1] [2]}	4010 00	\$923.00	00.004	CI-288	852.75		\$126.32	S6.26	S 0.92		\$154.63	\$\$6.30	\$97.99	S0.67			80.61	\$3.00	10.01	17.016	\$126.54		\$3.612.00	\$2,382.35								
	Quantity		3/	6 1 7	26	8 7		655	655	635 21215		1634	13740	4056	6024			00611	4004	4004	18	4	45	22	58								
	Units	ŀ	Ton	uo e	Ton	et e		Yd ³	γq	ъ З		Ĥ.	æ	đ	.e			đ:	252	1d	P		-		Ton								
	mail	Reinforcement	#5 to #/ Kebar (60 Ks1)	#5 to #15 Kebar (50 Kst)	Kemtorcing in Place, Ab10 Gr. 7	Process Logence Logence 1-1/2" Anchor Bolts, 24" Long	Concrete	6000 psi	Superplasticizer	Crane and Bucket for Walls Job Built Fornwork Over 16' High, 3 Use	Structural Steel	W14x120	W16x67	W24x76	Angles 4" and Larger	e ŝ	Fureproofing	Sprayed Cemititious	 INISE. Baca Course Cruchad Gradad Stone	2.1/2" Arrholt Road Tomina	2-12 Appart room 10ppug Chonsefoot Drum Vibratory Pollor/Commentee	200 Ton Grawler Grane	Self-Propelled 5 Ton Crane w/ Telesc. Boom	Pre-Cast Conc. Foundations	Tilt-Up Temporary Bracing		Subtotals	Sales Tax (6%)	Overhead & Profit (10%)	Subtotal	Contingency (10%)	Adjustments	Total
	Cost Code	002002011000	032110600/00	000100011750	032110601200	031519100510		033105350411	033105351420	033105/02000 031113852800		051223177400	051223753140	051223755500	051223400400			0//0019118//0	301103030050	2000101010120	015433703370	015433601400	015433602800	034105101300	051223770800								

J.2 Temporary Bracing

J.2.1 Temporary Bracing Design

	Thaison Ngilyen	Construction - TEARP BRACING
	a) Initial Design Parameters	
0	1) Length of Brace	
	L ground to pt lor 2 = $\sqrt{94^2 + 11.79^2}$ Lground to pt lor 2 = 45.54 = 547"	** Braces are angled 15° from vertical.
	L ground to pt 30r4 = \$72 + 19.292 Lgorand to pt 30r4 = 74.54" = 894"	
	2) Minimum Moment of Inertia	
-	Brace w/ 29.8 Kip Axial	** No shapes will be slender ** All shapes are compact
	$A_3 = P_m / F_{er}$	** Assume KL/r>4.71 E
	$0.877 F_e$ Ae = P	4.71 2000 = 118.26, Atober B.
	$A_{g} = \frac{P_{n}/F_{er}}{\frac{P_{n}}{0.877F_{e}}}$ $A_{g} = \frac{P_{n}}{\frac{0.877\pi^{2}E}{\left(\frac{KL}{r}\right)^{2}}}$	4.71 $\int \frac{29000}{46} = 118.26$, Atoper B. $r = \int \frac{46}{A_2}$
	$A_a = P_a$	k=1, pin-pin ends
0	$A_{g} = \frac{P_{u}}{\frac{0.q(0.87)\pi^{2}E}{(\frac{KL}{r})^{2}}}$	
-	$A_{g} = \frac{P_{u}}{0.9(0.8778^{2}E)r^{2}}$	
	$A_{g} = \frac{P_{u}}{\frac{0.9(0.877\pi^{2}E)r^{2}}{(KL)^{2}}}$ $A_{g} = \frac{P_{u}(KL)^{2}}{0.9(0.877\pi^{2}E)r^{2}}$	
	$A_{g} = \frac{P_{u}(KL)^{1} A_{g}}{0.9(0.877\pi^{1}E) I_{g}}$ $I_{g} = \frac{P_{u}(KL)^{2}}{0.9(0.877\pi^{1}E)}$ $I_{g} = \frac{29.8(1 \times 894)^{1}}{0.9(0.877)(\pi^{1})(29000)}$ $I_{u} = 0.9(0.877)(\pi^{1})(29000)$	
	$I_{g} = \frac{P_{g}(k_{L})}{0.9(0.8775^{2}E)}$	
	$I_{9} = \frac{19.8(1 \times 894)^{1}}{0.9(0.877)(\pi^{1})(19000)}$	
	$I_{g} = 105.5 \text{ in}^{4}$	
	Brace w/97.9 Kip Arial	
\bigcirc	$I_{g} = \frac{97.9 (1 = 547)^{L}}{0.9 (0.877) (s^{2}) (19000)}$ $I_{g} = 129.5 in^{4}$	
	.j	
35502		<u>د</u>
00000		

Thaison Nguyan	Construction - TEMP BRACENG
Brace w/ 255.3 Kip Axial	
$I_{g} = \frac{235.3 (1 \times 547)^{2}}{0.9 (0.877)(\pi^{2})(29000)}$ $I_{g} = 311.2 \text{ in}^{4}$	
b) Potential Bracing Members	
Member R(in) Member Properties I(in") A(in") L/r	** Member projecties were referenced off of Table 1-12
HSS 10 × 10 × $3\sqrt{8}$ 894 202 13.7 228.65 HSS 10 × 10 × $3\sqrt{8}$ 547 202 13.2 139.73 HSS 10 × 10 × $3\sqrt{8}$ 547 202 13.2 139.73 HSS 12 × 12 × 12 547 457 20.9 116.40	OF AISC STEEL CONSTR. MANUAL
1) Axial + Bending Capecity (LRFD)	
HSS10×10×1/8 , 1=894"	
I=202>105.5	
Pu= 0.9 * 0.877 * Fe Ag Pu= 0.9 * 0.877 * 5.47 * 13.2 Pu= 57.04 Kip	KL/r > 118.26 228.65 > 118.26 Juse E3-3 and E3-4
Mu = D.9 + Fy # , AISC STL CONSTR MANUAL \$F7 Mu = 0.9 (46)(47,2)/12	$F_e = \frac{T^2 E}{\left(\frac{KL}{r}\right)^2}$
Mu = 162.8 Kip-fr	$F_{e} = \frac{T^{2}(19000)}{(228.65)^{2}}$ $F_{e} = 5.47 \times ip lin^{2}$
HSS 10 × 10× 3/8 , 2=547	
I = 202 > 129.5 V	
$P_{u} = 0.9(0.877) \left[\frac{\Pi^2 (29000)}{(159.75)^2} \right] = 13.2$	KL/r >118.26 139.73>118.26 / we E3-3 and
Pu= 152.72 Kip	E3-4
Mu=0.9(46)(47.2)/12 Mu=162,8 Kip-pt	$M_{w,10cal} = 0.9 \left[F_y = -(F_y = -F_y S_x) \\ \left(0.305 \frac{h}{J_{wr}} \left(\frac{F_y}{F} = -0.758 \right) \right] \right]$
	Muylocal = 0.9 46 (47.2) - (46.47.2
	- 46.40.4)(-0.416)]
	Ma, 10cal = 172.83 Kip-ft

	Thaison Niguyen				Construction - TEMP DRALOW
	H5512×12:	× 2, l=547			
	I=457	>311.2 1			
	P4 = 0.0	1 0.658 FWF0 x 1	[y]Ag		KL/r<118.26 116.9 < 118.26 / We E3-2
		5.09 Kip	16 20.9		$F_{y}/F_{e} = \frac{46}{\frac{\pi^{2}(2900)}{(16-7)^{2}}} = 2.196$
		1(46)(89.6)/12 9.1 Kip-fr			Muylocal = 0.9 46(89.6) - (46 × 89.6
					- 46 • 96.2)(-0.461)]
					Mu, local = 330.4 Kip-ft
	2) Non-Translat	ion and Translatio	n Loads		
	braces ar per note	e not directly a in AISC STL Li ober (brace) se H	present because p lateral fonce resis DNSTR MANUAL \$A -WIT controllate to	ing system 1.2 of SPE	ic.
1	Member ASS10×10×3/8 HSS10×10×3/8	29.8 20	(Kip) Mnr (Kip-AT) 1.8 39.9 7.8 14.9	l(in) 894 547	
	H5512×12×12×12		5.3 23.7	547	
	3) Load Magi	ification Facto	prs		
	RAB_2=0, resistin	braces are no g system per	t directly a lat note in AISC ST	eral force L CONSTR	MANUALSA8.2 of SPEC.
	B,=	Pr /Pei ≥1 , AI	SC STL CONSTR MA	NVAL \$ 8.2.	,1
	Cm=1 ; +1 Su	ports, conserv	(brace self-w.x); vative	s present	btw:
	$P_{e_1} = \frac{T^2 F}{(K, L)}$	$(1^{4})^{2}$			HA No direct translation at brace ends > K1=1.0

10	aison Nguyen	Construction - This of Active
	HSS 10×10×3/8 &= 894"	
	$P_{e_1} = \frac{\pi^2 (0.8 \times 1.0 \times 29000 \times 202)}{(1:0 \times 894)^2}$ $P_{e_1} = 57.8 \text{ Kip}$	
	$B_1 = \frac{1}{1 - 1(29.8/57.8)}$ $B_1 = 2.1$	
	HSS10×10×32, &= E49	
-	$P_{e_1} = \frac{\pi^2 (0.8 \pm 1.0 \pm 29000 \pm 202)}{(1.0 \pm 547)^2}$ $P_{e_1} = 154.8 \text{ Kip}$	
	$B_1 = \frac{1}{1 - 1(97.9/154.8)}$ $B_1 = 2.7$	
	HSS 12×12×12, l=547"	
	$P_{e_1} = \frac{\pi^2 (0.8 \times 1.0 \times 29000 \times 457)}{(1.0 \times 347)^2}$ $P_{e_1} = 350.2 \text{ Kip}$	
	$B_{1} = \frac{1}{1 - 1(135.3/350.2)}$ $B_{1} = 3.0$	
	4) Axial-Bending Interaction	
	$M_{r} = B_{I}M_{m\pi} + B_{L}M_{L\pi}$ $P_{r} = P_{n\pi} + B_{s}P_{L\pi}$	
	HSSIOXIDX 3/8 , 2 = 894"	
	$P_r = P_{n\pi}$ $P_r = 29.8 \text{Kip}$	Pr/P2=29.8/57.04 Pr/P2=0.52 ≥ 0.2, use Eq. H1-la
	Mr=2.1(39.9) Mr=82.4 Kip.fr	Mr/Mc = 82.4/162.8 Mr/Mc = 0.51
	$\frac{P_r}{P_c} + \frac{g}{q} \frac{M_r}{M_c} \le 1$	
-		->

	Thason Nouven	CONSTRUCT ALIVIN BRACENG
	$0.52 + \frac{8}{9}(0.51) \le 1$	
\cap	0.97 41 V, can use HSS 10×10×38 &= 894"	
	45510×10×38, 2=547"	
	$P_{r} = 97.9 \text{ Kip}$ $M_{r} = 2.7(14.9)$ $M_{r} = 40.6 \text{ Kip-fx}$ $\frac{P_{r}}{P_{c}} + \frac{g}{9} \frac{M_{c}}{M_{c}} \leq 1$ $0.86 \leq 1 \sqrt{2} \text{ can use HSS Jox10x}^{3/3} \ \text{$L=547}^{11}$	Pr/P2 = 97,9/152.72 Pr/P2 = 0.64 ≥0.2, use Eq, HI-la Mr/M2= 40.6/162.8 Mr/M2= 0.25
	HSS 12 × 12 × 12 , 2 = 547"	
0	$P_{r} = 235.2 \text{ Kip}$ $M_{r} = 3(23.7)$ $M_{r} = 72.2 \text{ Kip} - \beta \pi$ $\frac{P_{r}}{P_{2}} + \frac{g}{9} \frac{M_{r}}{M_{2}} \le 1$ $0.89 \le 1 \sqrt{2} \text{ can use Histi2x12x12} \ l = 547''$	$P_r/P_c = 235.2/345.09$ $P_r/P_c = 0.68 \ge 0.2$, use Eq H1-1a $M_r/M_c = 72.2/309.1$ $M_r/M_c = 0.23$
	*	
0		
35502		

Appendix K: Façade Breadth Calculations and Details

K.1 Thermal Comfort

K.1.1 Thermal Comfort Benchmark

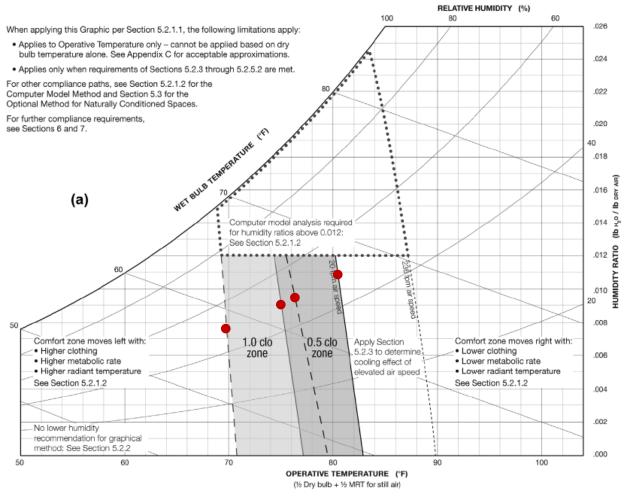


Figure AK.1, Comfort Zones Source: ASHRAE §5.2.1.1

Function of Space	Pressure Relationship to Adjacent Areas (n)	Minimum Outdoor ach	Minimum Total ach	All Room Air Exhausted Directly to Outdoors (j)	Air Recirculated by Means of Room Units (a)	RH (k), %	Design Temperature (l), °F/°C
SURGERY AND CRITICAL CARE							
Class B and C operating rooms, (m), (n), (o)	Positive	4	20	N/R	No	<u>20</u> 30–60	68-75/20-24
Operating/surgical cystoscopic rooms, (m), (n), (o)	Positive	4	20	N/R	No	<u>20</u> 30–60	68-75/20-24
Delivery room (Caesarean) (m), (n), (o)	Positive	4	20	N/R	No	<u>20</u> 30–60	68-75/20-24
Treatment room (p)	N/R	2	6	N/R	N/R	<u>20</u> 30–60	70-75/21-24
Trauma room (crisis or shock) (c)	Positive	3	15	N/R	No	<u>20</u> 30–60	70-75/21-24
Laser eye room	Positive	3	15	N/R	No	<u>20</u> 30–60	70-75/21-24
Class A Operating/Procedure room (o), (d)	Positive	3	15	N/R	No	<u>20</u> 30–60	70-75/21-24
DIAGNOSTIC AND TREATMENT							
Gastrointestinal endoscopy procedure room	Positive	2	6	N/R	No	<u>20</u> 30-60	68-73/20-23

TABLE 7-1 D	esign Parameters
-------------	------------------

Figure AK.1A, Recommended Humidity Levels Source: Addendum D ASHRAE 170-2008

Activity	ME I Units [®]	Btu/h ft²	WA
Resting			A CONTRACTOR
Sleeping	0.7	13	40
Reclining	0.8	15	45
Seated, quiet	1.0	18	60
Standing, relaxed	1.2	22	70
Walking (on the level)			
2 mph (0.9 m/s)	2.0	37	115
3 mph (1.2 m/s)	2.6	48	150
4 mph (1.8 m/s)	3.8	70	220
Office activities			
Reading, seated	1.0	18	60
Writing	1.0	18	60
Typing	1.1	20	65
Filing, seated	1.2	22	70
Filing, standing	1.4	26	80
Walking about	1.7	31	100
Lifting, packing	2.1	39	120
Driving/flying			120
Car	1.0-2.0	18-37	60-11
Aircraft, routine	1.2	22	70
Aircraft, instrument			/0
landing	1.8	33	105
Aircraft, combat	2.4	44	140
Heavy vehicle	3.2	59	185
Miscellaneous occupational			.55
activities			
Cooking	1.6-2.0	29-37	95-11
House cleaning	2.0-3.4	37-63	115-2
Seated, heavy limb	2.0 3.4	27-02	113-2
movement	2.2	41	130
Handling 110-lb (50-kg)	2.2		130
bags	4.0	74	235
Pick and shovel work	4.0-4.8	74-88	235-2
FICK drig shover work	4.0 4.0	/4-00	255-2

Figure AK.1B, Metabolic Rate of Typical Activities Source: ASHRAE Handbook – Fundamentals

Ensemble Description*	CLO,
Walking shorts, short-sleeve shirt	0.36
Trousers, short-sleeve shirt	0.57
Trousers, long-sleeve shirt	0.61
Same as above, plus suit jacket	0.96
Same as above, plus vest and T-shirt	1.14
Trousers, long-sleeve shirt, long-sleeve	
sweater, T-shirt	1.01
Same as above, plus suit jacket and	
long underwear bottoms	1.30
Sweat pants, sweat shirt	0.74
Long-sleeve pajama top, long pajama trousers,	
short ¾-sleeve robe, slippers (no socks)	0.96
Knee-length skirt, short-sleeve shirt,	
pantyhose, sandals	0.54
Knee-length skirt, long-sleeve shirt,	
full slip, pantyhose	0.67
Knee-length skirt, long-sleeve shirt,	
half slip, pantyhose, long-sleeve sweater	1.10
Same as above; replace sweater with suit jacket	1.04
Ankle-length skirt, long-sleeve shirt, suit jacket,	
pantyhose	1.10
Long-sleeve coveralls, T-shirt	0.72
Overalls, long-sleeve shirt, T-shirt	0.89
Insulated coveralls, long-sleeve thermal underwear,	
long underwear bottoms	1.37

Figure AK.1C, Metabolic Rate of Typical Activities Source: ASHRAE Handbook – Fundamentals

Table AK.1, Clo	thing Level	(clo)
Classification	Sea	son
Classification	Summer	Winter
Clinic Personnel	0.61	0.96
Patients	0.57	0.96

Table AK.2, Met	Ietabolic Rate (Met)	
Walking About	1.70	
Seated	1.00	

Table AK.3, Interior	Table AK.3, Interior Target Temperature	
	F)	
Summer	Winter	
76	72	

4) Clinic Personnel 1) Summer Tain, ici = $[T_{min, 1020} * (Clothing Level - 0.5) + Tain, 2020 * 70 ° F Tain, 2020 * (Clothing Level - 0.5) + Tain, 2020 * (Clothing Level - 0.5) +$	1) Summer Tomo, 101 = $[T_{min, 1000} = (Clothing Level - 0.5)$ $T_{min, 101} = [T_{00} (0.61-0.5) + 760 (1-0.61)]/0.5$ $T_{min, 101} = 74.68^{\circ}F$ $T_{max, 101} = 74.68^{\circ}F$ $T_{max, 101} = [T_{max, 1000} = ((Clothing Level - 0.5))]/0.5$ $T_{max, 101} = [T_{max, 1000} = ((-107hing Level - 0.5))]/0.5$ $T_{max, 101} = [T_{max, 1000} = ((-107hing Level - 0.5))]/0.5$ $T_{max, 101} = [T_{max, 1000} = ((-0.5) + 81 = (1-0.61))]/0.5$ $T_{max, 101} = [70 = (0.96 - 0.5) + 76 = (1-0.96)]/0.5$ $T_{max, 101} = [70 = (0.96 - 0.5) + 76 = (1-0.96)]/0.5$ $T_{max, 101} = [70 = (0.96 - 0.5) + 76 = (1-0.96)]/0.5$ $T_{max, 101} = [70 = (0.57 - 0.5) + 76 = (1-0.57)]/0.5$ $T_{max, 101} = [70 = (0.57 - 0.5) + 76 = (1-0.57)]/0.5$ $T_{max, 101} = [70 = (0.57 - 0.5) + 81 = (1-0.57)]/0.5$ $T_{max, 101} = [70 = (0.57 - 0.5) + 81 = (1-0.57)]/0.5$ $T_{max, 101} = [70 = (0.57 - 0.5) + 76 = (1-0.57)]/0.5$ $T_{max, 101} = [70 = (0.57 - 0.5) + 76 = (1-0.57)]/0.5$ $T_{max, 101} = [70 = (0.76 - 0.5) + 76 = (1-0.96)]/0.5$ $T_{max, 101} = [70 = (0.76 - 0.5) + 76 = (1-0.96)]/0.5$ $T_{max, 101} = [70 = (0.78^{\circ}F)$	Tha	nson Nguyen	Facade - THERMA CAMFORT	-
$T_{min,161} = [T_{min,160,00} * ((107hing Level-0.5) + T_{min,261,00} * (1) - Clothing Level)]/0.5$ $T_{min,161} = [70 * (0.61 - 0.5) + 75 * (1 - 0.61)]/0.5$ $T_{min,161} = 74.66°F$ $T_{max,161} = [T_{max,100,00} * (Clothing Level - 0.5)]/0.5$ $T_{max,161} = [T_{max,100,00} * (Clothing Level - 0.5)]/0.5$ $T_{max,161} = [70 * (0.64 - 0.5) + 81 * (1 - 0.61)]/0.5$ $T_{max,161} = 70.40°F$ 2) Winter $T_{min,161} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)]/0.5$ $T_{max,161} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.67 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.67 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 81 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 76 * (1 - 0.57)]/0.5$ $T_{max,161} = [70 * (0.68 - 0.5) + 76 * (1 - 0.57)]/0.5$ $T_{min,161} = [70 * (0.68 - 0.5) + 76 * (1 - 0.57)]/0.5$ $T_{min,161} = [70 * (0.68 - 0.5) + 76 * (1 - 0.66)]/0.5$	$T_{min,i(c)} = [T_{min,i(acc)} * (Clothing Level - 0.5) + T_{min,i(acc)} = 10^{\circ} F = $	0	1) Clinic Personnel		
The state of the	$T_{min,1(1)} = [T_{min,1acc}^{*}(10hing [evel]-0.5]) T_{min,0(1)} = [T_{00}(0.61-0.5) + 76x(1-0.61)]/0.5$ $T_{min,1(1)} = [T_{max,10,10}^{*}(10hing [evel])/0.5$ $T_{min,1(1)} = [T_{max,10,10}^{*}(10hing [evel]-0.5]) / T_{max,10,10}^{*}(1-10hing [evel])/0.5$ $T_{max,1(1)} = [T_{00}(0.61-0.5) + 81*(1-0.61)]/0.5$ $T_{max,1(1)} = [T_{00}(0.96-0.5) + 81*(1-0.96)]/0.5$ $T_{max,1(1)} = [T_{00}(0.97-0.5) + 81*(1-0.97)]/0.5$ $T_{max,1(1)} = [T_{00}(0.97-0.5) + 81*(1-0.97)]/0.5$ $T_{max,1(1)} = [T_{00}(0.96-0.5) + 81*(1-0.97)]/0.5$ $T_{max,1(1)} = [T_{00}(0.96-0.5) + 81*(1-0.97)]/0.5$ $T_{max,1(1)} = [T_{00}(0.96-0.5) + 76*(1-0.97)]/0.5$ $T_{max,1(1)} = [T_{00}(0.96-0.5) + 76*(1-0.96)]/0.5$		1) Summer	T_Min, 1000 = 70°F	
$T_{max,ici} = 79.68^{\circ}F$ 2) Winter $T_{min,ici} = [70 * (0.96 - 0.5) + 7(* (1 - 0.96)] / 0.5$ $T_{max,ici} = [75 * (0.96 - 0.5) + 81 * (1 - 0.96)] / 0.5$ $T_{max,ici} = 75.48^{\circ}F$ b) Patients 1) Summer $T_{min,ici} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)] / 0.5$ $T_{max,ici} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max,ici} = [15 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max,ici} = 80.16^{\circ}F$ 2) Winter $T_{min,ici} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{max,ici} = 70.48^{\circ}F$	$T_{max,ici} = 79.68^{\circ}F$ 1) Winter $T_{min,ici} = \begin{bmatrix} 70 * (0.96 - 0.5) + 7(* (1 - 0.96) \end{bmatrix} / 0.5 \\T_{min,ici} = 70.48^{\circ}F \\T_{max,ici} = \begin{bmatrix} 75 * (0.96 - 0.5) + 81 * (1 - 0.96) \end{bmatrix} / 0.5 \\T_{max,ici} = 75.48^{\circ}F \\\end{bmatrix}$ b) Patients 1) Summer $T_{min,ici} = \begin{bmatrix} 70 * (0.57 - 0.5) + 76 * (1 - 0.57) \end{bmatrix} / 0.5 \\T_{mox,ici} = 75.16^{\circ}F \\T_{mox,ici} = \begin{bmatrix} 75 * (0.57 - 0.5) + 81 * (1 - 0.57) \end{bmatrix} / 0.5 \\T_{mox,ici} = \begin{bmatrix} 75 * (0.57 - 0.5) + 81 * (1 - 0.57) \end{bmatrix} / 0.5 \\T_{mox,ici} = 80.16^{\circ}F \\\end{bmatrix}$ 2) Winter $T_{min,ici} = \begin{bmatrix} 70 * (0.96 - 0.5) + 76 * (1 - 0.96) \end{bmatrix} / 0.5 \\T_{mox,ici} = 70.48^{\circ}F \\\end{bmatrix}$		$T_{\min, 1Cl} = [T_{\min, 1.0clo} * (Clothing Level - 0.5) + T_{\min, 0.5clo} * (1 - Clothing Level)] / 0.5 T_{\min, 1Cl} = [70 * (0.61 - 0.5) + 76* (1 - 0.61)] / 0.5 T_{\min, 1Cl} = 74.68°F$	Tmanoscio = BI F	ASHRAE \$5.2.1.1 Graph, Shown
$T_{min_{j}1c1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{min_{j}1c1} = 70.48^{\circ}F$ $T_{max_{j}rc1} = [75 * (0.96 - 0.5) + 81 * (1 - 0.96)] / 0.5$ $T_{max_{j}rc1} = 75.48^{\circ}F$ b) Patients 1) Summer $T_{min_{j}1c1} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)] / 0.5$ $T_{min_{j}1c1} = 15.16^{\circ}F$ $T_{max_{j}rc1} = [15 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max_{j}rc1} = 80.16^{\circ}F$ 2) Winter $T_{min_{j}1c1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{min_{j}1c1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$	$T_{min,tc1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{max,tc1} = [75 * (0.96 - 0.5) + 81 * (1 - 0.96)] / 0.5$ $T_{max,tc1} = [75 * (0.96 - 0.5) + 81 * (1 - 0.96)] / 0.5$ b) Patients 1) Summer $T_{min,tc1} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)] / 0.5$ $T_{max,tc1} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max,tc1} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ 2) Winter $T_{min,tc1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{max,tc1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$		$T_{max,1c1} = [T_{max,1.0cL0} * (clothing Level - 0.5)] / 0.5 + T_{max,0.5cL0} * (1 - clothing Level)] / 0.5 T_{max,1c1} = [75 * (0.61-0.5) + 81 * (1-0.51)] / 0.5 T_{max,1c1} = 79.68° F$		
$T_{max_{j}kl} = [75*(0.96-0.5)+81*(1-0.96)]/0.5$ $T_{max_{j}kl} = 75.48°F$ b) Patients 1) Summer $T_{min,jkl} = [70*(0.57-0.5)+76*(1-0.57)]/0.5$ $T_{max_{j}kl} = 175*(0.57-0.5)+81*(1-0.57)]/0.5$ $T_{max_{j}kl} = 80.16°F$ 2) Winter $T_{min,jkl} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$ $T_{min,jkl} = 70.48°F$	$T_{max,yeci} = [75*(0.96-0.5)+81*(1-0.96)]/0.5$ $T_{max,yeci} = 75.48°F$ b) Patients 1) Summer $T_{min,yeci} = [70*(0.57-0.5)+76*(1-0.57)]/0.5$ $T_{min,yeci} = [75*(0.57-0.5)+81*(1-0.57)]/0.5$ $T_{max,yeci} = [80.16°F$ 2) Winter $T_{min,yeci} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$ $T_{min,yeci} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$		2) Winter		
$T_{max,tc1} = [75*(0.96-0.5)+81*(1-0.96)]/0.5$ $T_{max,tc1} = 75.98°F$ b) Patients 1) Summer $T_{min,tc1} = [70*(0.57-0.5)+76*(1-0.57)]/0.5$ $T_{max,tc1} = [75*(0.57-0.5)+81*(1-0.57)]/0.5$ $T_{max,tc1} = 80.16°F$ 2) Winter $T_{min,tc1} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$ $T_{min,tc1} = 70.98°F$	$T_{max,yeci} = [75*(0.96-0.5)+81*(1-0.96)]/0.5$ $T_{max,yeci} = 75.48°F$ b) Patients 1) Summer $T_{min,yeci} = [70*(0.57-0.5)+76*(1-0.57)]/0.5$ $T_{min,yeci} = [75*(0.57-0.5)+81*(1-0.57)]/0.5$ $T_{max,yeci} = [80.16°F$ 2) Winter $T_{min,yeci} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$ $T_{min,yeci} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$		$T_{min,lcl} = \left[70 * (0.96 - 0.5) + 76 * (1 - 0.96) \right] / 0.5$ $T_{min,lcl} = 70.48^{\circ} F$		
b) Patients 1) Summer $T_{min, j(c)} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)] / 0.5$ $T_{min, j(c)} = 75.16^{\circ}F$ $T_{max, j(c)} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max, j(c)} = 80.16^{\circ}F$ 2) Winter $T_{min, j(c)} = [70 * (0.46 - 0.5) + 76 * (1 - 0.46)] / 0.5$ $T_{min, j(c)} = 70.48^{\circ}F$	b) Patients 1) Summer $T_{m_{1}m_{1}m_{1}} = \left[70 * (0.57 - 0.5) + 76 * (1 - 0.57)\right] / 0.5$ $T_{m_{1}m_{1}} = 75.16^{\circ}F$ $T_{m_{2}m_{1}} = \left[75 * (0.57 - 0.5) + 81 * (1 - 0.57)\right] / 0.5$ $T_{max_{1}} = \left[75 * (0.57 - 0.5) + 81 * (1 - 0.57)\right] / 0.5$ $T_{max_{1}} = 80.16^{\circ}F$ 2) Winter $T_{m_{1}m_{1}} = \left[70 * (0.46 - 0.5) + 76 * (1 - 0.46)\right] / 0.5$ $T_{m_{2}} = 70.48^{\circ}F$		$T_{max,tcl} = \left[75 \times (0.96 - 0.5) + 81 \times (1 - 0.96)\right] / 0.5$ $T_{max,tcl} = 75.48^{\circ} F$		
1) Summer $T_{min, iki} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)] / 0.5$ $T_{min, iki} = 75.16^{\circ}F$ $T_{max, iki} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max, iki} = 80.16^{\circ}F$ 2) Winter $T_{min, iki} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{min, iki} = 70.98^{\circ}F$	1) Summer $T_{m:n,ici} = [70 * (0.57 - 0.5) + 76 * (1 - 0.57)] / 0.5$ $T_{m:n,ici} = 75.16^{\circ}F$ $T_{max,ici} = [75 * (0.57 - 0.5) + 81 * (1 - 0.57)] / 0.5$ $T_{max,ici} = 80.16^{\circ}F$ 2) Winter $T_{min,ici} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{min,ici} = 70.48^{\circ}F$				
$T_{min, j(c)} = \left[70 * (0.57 - 0.5) + 76 * (1 - 0.57)\right] / 0.5$ $T_{min, j(c)} = 75.16^{\circ}F$ $T_{max, j(c)} = \left[75 * (0.57 - 0.5) + 81 * (1 - 0.57)\right] / 0.5$ $T_{max, j(c)} = 80.16^{\circ}F$ 2) Winter $T_{min, j(c)} = \left[70 * (0.46 - 0.5) + 76 * (1 - 0.46)\right] / 0.5$ $T_{min, j(c)} = 70.48^{\circ}F$	$T_{min, 161} = \left[70 * (0.57 - 0.5) + 76 * (1 - 0.57)\right] / 0.5$ $T_{min, 161} = 75.16^{\circ}F$ $T_{max, 161} = \left[75 * (0.57 - 0.5) + 81 * (1 - 0.57)\right] / 0.5$ $T_{max, 161} = 80.16^{\circ}F$ 2) Winter $T_{min, 161} = \left[70 * (0.96 - 0.5) + 76 * (1 - 0.96)\right] / 0.5$ $T_{min, 161} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{min, 161} = 70.48^{\circ}F$				
$T_{max, 1c1} = [75*(0.57-0.5) + 81*(1-0.57)]/0.5$ $T_{max, 1c1} = 80.16^{\circ}F$ 2) Winter $T_{min, 1c1} = [70*(0.96-0.5) + 76*(1-0.96)]/0.5$ $T_{min, 1c1} = 70.98^{\circ}F$	$T_{max, 1c1} = [75*(0.57-0.5)+81*(1-0.57)]/0.5$ $T_{max, 1c1} = 80.16^{5}F$ 2) Winter $T_{min, 1c1} = [70*(0.96-0.5)+76*(1-0.96)]/0.5$ $T_{min, 1c1} = 70.98^{5}F$		Tmin, 161 = [70 = (0.57 - 0.5) + 76 = (1-0.57)] /0.5 Tmin, 161 = 75.16°F		
$T_{\min,1Cl} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{\min,1Cl} = 70.48^{\circ}F$	$T_{\min,1Cl} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{\min,1Cl} = 70.48°F$		T max, 101 = [75*(0.57-0.5) + 81*(1-0.57)] 10.5 T max, 101 = 80.16"F		
$T_{\min,jlcl} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{\min,jlcl} = 70.48°F$ $T_{\max,jlcl} = [75 * (0.96 - 0.5) + 81 (1 - 0.96)] / 0.5$ $T_{\max,jlcl} = 75.48°F$	$T_{\min,1c1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{\min,1c1} = 70.98°F$ $T_{\max,1c1} = [75 * (0.96 - 0.5) + 81 (1 - 0.96)] / 0.5$ $T_{\max,1c1} = 75.48°F$		2) Winter		
$T_{\max_{1} < 1} = [75 \times (0.96 - 0.5) + 81 (1 - 0.96)] / 0.5$ $T_{\max_{1} < 1} = 75.48^{\circ} F$	$T_{max_{1}c1} = [75*(0.96-0.5)+81(1-0.96)]/0.5$ $T_{max_{1}c1} = 75.48^{\circ}F$		$T_{\min_{j}1C1} = [70 * (0.96 - 0.5) + 76 * (1 - 0.96)] / 0.5$ $T_{\min_{j}1C1} = 70.48°F$		
			$T_{max_{1}c_{1}} = [75*(0.96-0.5)+81(1-0.96)]/0.5$ $T_{max_{1}c_{1}} = 75.48^{\circ}F$		